A promising "metastable" liquid crystal stationary phase for gas chromatography.

J Chromatogr A

Laboratoire Sciences Analytiques Bioanalytiques et Miniaturisation (LSABM), UMR CNRS 8231 - Chimie Biologie Innovation, ESPCI-Paris, PSL Research University. 10, rue Vauquelin 75231, Paris CEDEX 05, France.

Published: April 2020

The liquid crystal state is an ordered physical state between a solid and a liquid. Previous research, in gas chromatography, proved that it provides a geometric selectivity, which allows the separation of geometric position isomers and cis-trans isomers that are difficult to separate on conventional gas chromatography stationary phases (polydimethyl siloxane derived and polyethylene glycol stationary phases). However, their use was generally very limited by the rather high temperature at which they must be operated, normally above the solid-liquid crystal transition temperature. In the present study we are interested in a new synthesized material, 1,4- bis (4-bromohexyloxy benzoate) phenyl (BHOBP). The first characterizations of BHOBP were carried out by thermogravimetric analysis, hot-stage optical microscopy and differential scanning calorimetry to control the thermal stability of the BHOBP as well as the nematic texture of the mesophase highlighted in a well-defined temperature range (120 °C-200 °C). When heated, the solid compound led to a stable liquid crystal state. Its cooling has revealed "a new metastable physical state, which is the supercooled liquid crystal phase". After these first characterizations, the new material was used as a stationary phase for gas chromatography. The BHOBP was deposited in a capillary column by the dynamic method. The inverse gas chromatography study of the column revealed a solid-stable nematic phase transition temperature, in agreement with the first characterization methods. The stable liquid crystal phase showed good resolutions in the analysis of some geometric isomers of low volatility as PAHs. The presence of the supercooled liquid crystal state in the chromatographic column has also been confirmed. This new metastable state is particularly interesting because it enlarged the scope of this material by improving the resolution of several mixtures. Thus, the separation of highly volatile mixtures of geometric isomers (e.g. cis and trans-decalin) was achieved only through this metastable mesophase confirming its unique selectivity. The metastable liquid crystal, used at 80 °C, has also exhibited an original behavior by its stability after several weeks of use at the same temperature, maintaining constant retention factors and selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.460786DOI Listing

Publication Analysis

Top Keywords

liquid crystal
28
gas chromatography
20
crystal state
12
liquid
8
crystal
8
stationary phase
8
phase gas
8
physical state
8
stationary phases
8
transition temperature
8

Similar Publications

Chameleon-inspired molecular imprinted polymer with bicolored states for visual and stable detection of diethylstilbestrol in water and food samples.

Food Chem

December 2024

Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:

A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

The P2-NaMnO cathode material has long been constrained by phase transitions induced by the Jahn-Teller (J-T) effect during charge-discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor MnO synthesis, followed by calcination to obtain NaTiMnO materials. We investigated the effects of Ti doping on the structure, morphology, Mn concentration, and Na diffusion coefficients of NaTiMnO.

View Article and Find Full Text PDF

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!