Metabolic activity of Bacillus coagulans R11 and the health benefits of and potential pathogen inhibition by this species in the intestines of laying hens under lead exposure.

Sci Total Environ

College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China. Electronic address:

Published: March 2020

Probiotics are widely used in agricultural breeding for care and maintenance of animal health, especially Bacillus coagulans, a new and popular species that could replace Lactobacillus. However, lead contamination in feed might influence the beneficial function. In the present study, Bacillus coagulans R11 was used as a model bacterium to investigate the effect of lead on changes in metabolites and genes, which could influence the beneficial function on laying hen. At the laboratory scale, transcriptomics and metabolomics were used to screen the main metabolites and related genes under lead exposure. The results showed that 4-acetamidobutanoic acid, dodecanoic acid, L-3-phenyllactic acid, apigenin and daidzein, which are antioxidants and antibacterial agents, were the main metabolites, even in the 100 ppm lead exposure group (the levels of these metabolites were 1.17-, 1.10-, 4.80-, 1.43- and 1.67-fold higher in the 100 ppm group than in pure culture medium). Twenty-three genes associated with the syntheses of the above 5 main metabolites were identified. Further animal experiments showed that B. coagulans R11 feeding of laying hens under lead exposure could prevent oxidative damage by increasing T-AOC and T-SOD activity and reducing the MDA concentration in serum and reducing the abundances of potential pathogens (Escherichia coli, Pseudomonas aeruginosa and Salmonella). Further analysis also showed that the inhibition of pathogen growth was due to the regulation of gene expression, as observed by transcriptomics, and these genes were associated with the abovementioned 5 main metabolites. However, the laying rate decreased by 10.53% compared with that of the control group when the lead exposure concentration was 100 mg/kg. The present study suggested that Bacillus coagulans R11 could help prevent oxidative damage and inhibit pathogen growth in laying hens to maintain a healthy intestinal environment for daily breeding, but under high-lead conditions, Bacillus coagulans R11 feeding could decrease the laying rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134507DOI Listing

Publication Analysis

Top Keywords

bacillus coagulans
20
coagulans r11
20
lead exposure
20
main metabolites
16
laying hens
12
hens lead
8
influence beneficial
8
beneficial function
8
metabolites genes
8
genes associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!