Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors.

Eur J Med Chem

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115, Bonn, Germany. Electronic address:

Published: February 2020

Protein phosphorylation by kinases is of critical importance for the regulation of many cellular functions. When kinases are deregulated numerous biological processes are affected, which may cause a variety of diseases. Therefore, kinase inhibition plays an important role for therapeutic intervention. A number of kinase inhibitors have been approved as drugs, initially in oncology where promiscuous (multi-kinase) inhibitors were most efficacious. Exploring kinase inhibitor selectivity and promiscuity for therapy is among the most challenging aspects of kinase drug discovery. Herein, we thoroughly analyze a kinase profiling experiment in which 637 designated inhibitors of p38α MAP kinase (p38α) were tested against a panel of 60 kinases distributed across the human kinome. In this experiment, only 19% of the inhibitors were found to be promiscuous when the median p38α inhibition level was applied as an activity threshold. Promiscuous inhibitors had a median value of two targets per compound, and many of these inhibitors were only active against the p38α and closely related JNK3 enzymes. Promiscuity cliffs were identified and analyzed in a network representation revealing structural modifications that were implicated in triggering compound promiscuity. Taken together, the findings revealed a high degree of selectivity of designated p38α directed inhibitors although they target the ATP binding site that is largely conserved across the human kinome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2019.112004DOI Listing

Publication Analysis

Top Keywords

inhibitors
8
human kinome
8
kinase
7
p38α
5
promiscuity
4
promiscuity analysis
4
analysis kinase
4
kinase panel
4
panel screen
4
screen designated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!