In recent years, high-throughput sequencing has revolutionized disease diagnosis by its powerful ability to provide high resolution genomic information. The Oxford Nanopore MinION sequencer has unparalleled potential as a rapid disease diagnostic tool due to its high mobility, accessibility, and short turnaround time. However, there is a lack of rigorous quality assessment and control processes standardizing the testing on the MinION, which is necessary for incorporation into a diagnostic workflow. Thus, our study examined the use of the MinION sequencer for bacterial whole genome generation and characterization. Using Streptococcus suis as a model, we optimized DNA isolation and treatments to be used for MinION sequencing and standardized de novo assembly to quickly generate a full-length consensus sequence achieving a 99.4% average accuracy. The consensus genomes from MinION sequencing were able to accurately predict the multilocus sequence type in 8 out of 10 samples and identified antimicrobial resistance profiles for 100% of the samples, despite the concern of a high error rate. The inability to unequivocally predict sequence types was due to difficulty in differentiating high identity alleles, which was overcome by applying additional error correction methods to increase consensus accuracy. This manuscript provides methods for the use of MinION sequencing for identification of S. suis genome sequence, sequence type, and antibiotic resistance profile that can be used as a framework for identification and classification of other pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2019.105817DOI Listing

Publication Analysis

Top Keywords

minion sequencing
16
streptococcus suis
8
multilocus sequence
8
antimicrobial resistance
8
minion sequencer
8
sequence type
8
minion
7
sequence
6
sequencing streptococcus
4
suis allows
4

Similar Publications

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

: Monomicrobial necrotizing fasciitis is associated with exceedingly high mortality rates. Although effective antimicrobial therapy is an important part of treatment, the traditional microbiological diagnostic methods are not fast enough to meaningfully influence early therapeutic decisions. : Here, we report the application of the BioMérieux Biofire Filmarray Joint Infection Panel (BFJIP) for the rapid detection of the causative agent and susceptibility prediction in such a case.

View Article and Find Full Text PDF

Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background: Molecular diagnosis has become highly significant for patient management in oncology.

Methods: Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!