Theoretical study on the regulation of circadian rhythms by RNA methylation.

J Theor Biol

iTHEMS, RIKEN, Wako 351-0198, Japan; Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan.

Published: April 2020

Messenger RNAs are often destabilized by methylation, suggesting that mRNA methylation alters mRNA and protein dynamics. This may indicate that the gene regulatory system is reflected by the metabolic system through mRNA methylation because methylation substrates are components of the metabolic system. Elucidating the mechanisms by which mRNA methylation regulates gene regulatory systems has posed considerable challenges due to the numerous targets of mRNA methylation. Recent studies have demonstrated that inhibition of mRNA N6-methyladenosine methylation elongates circadian periods. The aim of this study was to understand the mechanisms by which mRNA methylation regulates circadian rhythms. Using a detailed realistic model and a simple model, we demonstrated that period elongation of circadian rhythms by decreasing mRNA methylation can be achieved by two possibilities, i.e., decreasing mRNA methylation stabilizes nonoscillatory mRNAs such as Ck1δ and/or stabilizes oscillatory mRNAs of clock genes such as Per and Cry. In addition, we predicted that period elongation by stabilizing nonoscillatory mRNA (Ck1δ) should always be accompanied by the distortion of the circadian waveform. Finally, we discuss the validity of the two possible mechanisms on the regulation of circadian rhythms by mRNA methylation by quantifying waveform distortion of circadian gene activity data with or without mRNA methylation inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2019.110140DOI Listing

Publication Analysis

Top Keywords

mrna methylation
36
circadian rhythms
16
methylation
13
mrna
12
regulation circadian
8
gene regulatory
8
metabolic system
8
mechanisms mrna
8
methylation regulates
8
period elongation
8

Similar Publications

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.

View Article and Find Full Text PDF

The transcription factor TWIST1 is a major regulator of Epithelial-Mesenchymal Transition, enhancing cancer cell mobility and invasive potential. Overexpression of TWIST1 is associated with tumor progression and poor prognosis. In our study, we explored the role of TWIST1 as both a prognostic biomarker and a therapeutic target in bladder cancer (BC), as well as the relationship between its promoter methylation and mRNA expression in bladder cancer patients.

View Article and Find Full Text PDF

Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.

Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!