Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review.

Environ Toxicol Chem

Environment and Climate Change Canada, Gatineau, Quebec, Canada.

Published: January 2020

Many metals (aluminum, cadmium, cobalt, copper, nickel, lead, zinc) are widely studied environmental contaminants because of their ubiquity, potential toxicity to aquatic life, and tendency for toxicity to vary widely as a function of water chemistry. The interactions between metal and water chemistry influence metal "bioavailability," an index of the rate and extent to which the metal reaches the site of toxic action. The implications of metal bioavailability for ecological risk assessment are large, with as much as a 100-fold variability across a range of water chemistries in surface waters. Beginning as early as the 1930s, considerable research effort was expended toward documenting and understanding metal bioavailability as a function of total and dissolved metal, water hardness, natural organic matter, pH, and other water characteristics. The understanding of these factors and improvements in both analytical and computational chemistry led to the development of modeling approaches intended to describe and predict the relationship between water chemistry and metal toxicity, including the free ion activity model, the gill surface interaction model, the biotic ligand model, and additional derivatives and regression models that arose from similar knowledge. The arc of these scientific advances can also be traced through the evolution of the US Environmental Protection Agency's ambient water quality criteria over the last 50 yr, from guidance in the "Green Book" (1968) to metal-specific criteria produced in the last decade. Through time, water quality criteria in many jurisdictions have incorporated increasingly sophisticated means of addressing metal bioavailability. The present review discusses the history of scientific understanding of metal bioavailability and the development and application of models to incorporate this knowledge into regulatory practice. Environ Toxicol Chem 2019;39:48-59. © 2019 SETAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382335PMC
http://dx.doi.org/10.1002/etc.4558DOI Listing

Publication Analysis

Top Keywords

metal bioavailability
16
water chemistry
12
metal
9
water
8
metal water
8
understanding metal
8
water quality
8
quality criteria
8
bioavailability
5
bioavailability assessment
4

Similar Publications

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control.

View Article and Find Full Text PDF

The ecology of watersheds plays an important role in regulating regional climate and human activities. The sediment-soil system in the middle and lower reaches of the Yellow River Basin (Henan section) was explored. The spatial distribution characteristics of heavy metals (HMs) showed that tributaries, which are affected by anthropogenic activities, contain higher concentrations of HMs than the main channel.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!