Neonicotinoid seed treatments are frequently used in cotton (Gossypium hirsutum L. [Malvales: Malvaceae]) production to provide protection against early-season herbivory. However, there is little known about how these applications affect extrafloral nectar (EFN), an important food resource for arthropod natural enemies. Using enzyme-linked immunosorbent assays, we found that neonicotinoids were translocated to the EFN of clothianidin- and imidacloprid-treated, greenhouse-grown cotton plants at concentrations of 77.3 ± 17.3 and 122.6 ± 11.5 ppb, respectively. We did not find differences in the quantity of EFN produced by neonicotinoid-treated cotton plants compared to untreated controls, either constitutively or after mechanical damage. Metabolomic analysis of sugars and amino acids from treated and untreated plants did not detect differences in overall composition of EFN. In bioassays, female Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) parasitoid wasps that fed on EFN from untreated, clothianidin-treated, or imidacloprid-treated plants demonstrated no difference in mortality or parasitization success. We also conducted acute toxicity assays for C. marginiventris fed on honey spiked with clothianidin and imidacloprid and established LC50 values for male and female wasps. Although LC50 values were substantially higher than neonicotinoid concentrations detected in EFN, caution should be used when translating these results to the field where other stressors could alter the effects of neonicotinoids. Moreover, there are a wide range of possible sublethal impacts of neonicotinoids, none of which were explored here. Our results suggest that EFN is a potential route of exposure of neonicotinoids to beneficial insects and that further field-based studies are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ee/nvz157 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFPlant J
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Modern Agriculture, School of Life Sciences, Nantong University, Nantong 226019, China.
Proline, a critical osmoregulatory compound, is integral to various plant stress responses. The gene, which encodes the rate-limiting enzyme in proline biosynthesis, known as ∆1-pyrroline-5-carboxylate synthetase, is fundamental to these stress response pathways. While the functions of genes in plants have been extensively documented, their specific roles in cotton remain inadequately characterized.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Agricultural College, Shihezi University, Shihezi 832003, China.
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!