Weak hydrogen bonds are increasingly hypothesized to play key roles in a wide range of chemistry from catalysis to gelation to polymer structure. Here, N/C spin-echo magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) experiments are applied to "view" intermolecular CH···N hydrogen bonding in two selectively labeled organic compounds, 4-[N] cyano-4'-[C] ethynylbiphenyl () and [N,C]-2,4,6-triethynyl-1,3,5-triazine (). The synthesis of , is reported here for the first time via a multistep procedure, where the key element is the reaction of [N]-2,4,6-trichloro-1,3,5-triazine () with [C]-[(trimethylsilyl)ethynyl]zinc chloride () to afford its immediate precursor [N,C]-2,4,6-tris[(trimethylsilyl)ethynyl]-1,3,5-triazine (). Experimentally determined hydrogen-bond-mediated couplings (4.7 ± 0.4 Hz () and 4.1 ± 0.3 Hz ()) are compared with density functional theory (DFT) gauge-including projector augmented wave (GIPAW) calculations, whereby species-independent coupling values (29.0 × 10 kg m s A () and 27.9 × 10 kg m s A ()) quantitatively demonstrate the couplings for these "weak" CH···N hydrogen bonds to be of a similar magnitude to those for conventionally observed NH···O hydrogen-bonding interactions in uracil (: 28.1 and 36.8 × 10 kg m s A). Moreover, the GIPAW calculations show a clear correlation between increasing (and ) coupling and reducing C(H)···N and H···N hydrogen-bonding distances, with the Fermi contact term accounting for at least 98% of the isotropic coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b10726DOI Listing

Publication Analysis

Top Keywords

ch···n hydrogen
12
intermolecular ch···n
8
hydrogen bonding
8
hydrogen bonds
8
gipaw calculations
8
weak intermolecular
4
ch···n
4
hydrogen
4
bonding determination
4
determination ch-n
4

Similar Publications

Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C-C coupling or H-H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu-N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H.

View Article and Find Full Text PDF

Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.

Angew Chem Int Ed Engl

December 2024

University of Wisconsin-Madison, Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, UNITED STATES OF AMERICA.

In this study, we employed EC-MS to elucidate the role of halide anions in electrochemical CO2 and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2 production decreased in the order KF > KCl > KI, meaning that I- most strongly suppressed HER.

View Article and Find Full Text PDF

The incorporation of photoactive organic dyes into layered inorganic materials enhances their optical and chemical properties, making them ideal for sensing applications. In this study, Bisindolyl methane (BIM)-based neutral probes were integrated with bentonite clay to explore their sensing capabilities. Probe 1 (unoxidized BIM) and Probe 2 (oxidized BIM) generally exhibited quenched luminescence in solution due to intramolecular rotations.

View Article and Find Full Text PDF

Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability.

AMB Express

December 2024

Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!