A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Profiling Cell-Matrix Adhesion Using Digitalized Acoustic Streaming. | LitMetric

Profiling Cell-Matrix Adhesion Using Digitalized Acoustic Streaming.

Anal Chem

Department of Intelligent Systems Engineering , Indiana University, Bloomington , Indiana 47405 , United States.

Published: January 2020

Profiling the kinetics of cell-matrix adhesion is of great importance to understand many physiological and pathological processes such as morphogenesis, tissue homeostasis, wound healing, and tumorigenesis. Here, we developed a novel digital acoustofluidic device for parallel profiling cell-matrix adhesion at single-cell level. By introduction of localized and uniform acoustic streaming into an open chamber microfluidic device, the adherent cells within the open chamber can be detached by the streaming-induced Stokes drag force. By digital regulation of pulsed acoustic power from a low level to high levels, the hundreds of adherent cells can be ruptured from the fibronectin-coated substrate accordingly, and their adhesive forces (from several pN to several nN) and kinetics can be determined by the applied power and cell incubation time. As a proof-of-concept application for studying cancer metastasis, we applied this technique to measure the adhesion strength and kinetics of human breast cancer cells to extracellular matrix such as fibronectin and compared their metastatic potentials by measuring the rupture force of cancer cells representing malignant (MCF-7 cells and MDA-MB-231 cells) and nonmalignant (MCF-10A cells) states. Our acoustofluidic device is simple, easy to operate, and capable of measuring, in parallel, hundreds of individual cells' adhesion forces with a resolution at the pN level. Thus, we expect this device could be widely used for both fundamental cell biology research as well as development of cancer diagnostics and tissue engineering technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05065DOI Listing

Publication Analysis

Top Keywords

cell-matrix adhesion
12
profiling cell-matrix
8
acoustic streaming
8
acoustofluidic device
8
open chamber
8
adherent cells
8
cancer cells
8
cells
7
adhesion
5
adhesion digitalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!