The nanoparticles produced by magnetotactic bacteria, called magnetosomes, are made of a magnetite core with high levels of crystallinity surrounded by a lipid bilayer. This organized structure has been developed during the course of evolution of these organisms to adapt to their specific habitat and is assumed to resist degradation and to be able to withstand the demanding biological environment. Herein, we investigated magnetosomes' structural fate upon internalization in human stem cells using magnetic and photothermal measurements, electron microscopy, and X-ray absorption spectroscopy. All measurements first converge to the demonstration that intracellular magnetosomes can experience an important biodegradation, with up to 70% of their initial content degraded, which is associated with the progressive storage of the released iron in the ferritin protein. It correlates with an extensive magnetite to ferrihydrite phase transition. The ionic species delivered by this degradation could then be used by the cells to biosynthesize magnetic nanoparticles anew. In this case, cell magnetism first decreased with magnetosomes being dissolved, but then cells remagnetized entirely, evidencing the neo-synthesis of biogenic magnetic nanoparticles. Bacteria-made biogenic magnetosomes can thus be totally remodeled by human stem cells, into human cells-made magnetic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b08061 | DOI Listing |
Pharmaceutics
January 2025
Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK.
: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.
View Article and Find Full Text PDFPharmaceutics
January 2025
Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!