Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a planar electron emission device based on a graphene/hexagonal boron nitride (h-BN)/n-Si heterostructure is fabricated to realize highly monochromatic electron emission from a flat surface. The h-BN layer is used as an insulating layer to suppress electron inelastic scattering within the planar electron emission device. The energy spread of the emission device using the h-BN insulating layer is 0.28 eV based on the full-width at half-maximum (FWHM), which is comparable to a conventional tungsten field emitter. The characteristic spectral shape of the electron energy distributions reflected the electron distribution in the conduction band of the n-Si substrate. The results indicate that the inelastic scattering of electrons at the insulating layer is drastically suppressed by the h-BN layer. Furthermore, the maximum emission current density reached 2.4 A/cm, which is comparable to that of a conventional thermal cathode. Thus, the graphene/h-BN heterostructure is a promising material for planar electron emission devices to obtain a highly monochromatic electron beam and a high electron emission current density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b17468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!