Chimeric antigen receptor T (CAR-T) cell therapy, which adoptively transfers engineered T cells expressing synthetic receptors to target specific antigens, has achieved great clinical success in treating hematological malignancies. Though FDA has approved two CAR-T products, CAR-T therapy can cause some side effects, such as cytokine release syndrome (CRS), neurotoxicity and B cell aplasia. Meanwhile, lacking tumor specific antigen and the suppressive tumor environment limit the efficacy of CAR-T therapy in solid tumor. This review focuses on the structural components, clinical applications and synthetic biology approaches on CAR-T cell design, and summarizes the challenges and perspectives of CAR-T therapy as a revolutionary cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.190291 | DOI Listing |
J Immunother Cancer
January 2025
Rapa Therapeutics, Rockville, Maryland, USA.
Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany, Erlangen, Germany. Electronic address:
Objectives: CD19-targeting chimeric antigen receptor (CAR) T-cell therapy can induce long-term drug-free remission in patients with autoimmune diseases (AIDs). The efficacy of CD19-CAR T-cell therapy is presumably based on deep tissue depletion of B cells; however, such effect has not been proven in humans in vivo.
Methods: Sequential ultrasound-guided inguinal lymph node biopsies were performed at baseline and after CD19-CAR T-cell therapy in patients with AIDs.
Front Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China.
Objective: Currently, chimeric antigen receptor T-cell (CART) therapy represents a highly effective approach for relapsed/refractory B-cell lymphomas. However, it also carries treatment-related risks. Limited data are available on the risks associated with CART therapy in patients with gastrointestinal involvement in B-cell lymphomas.
View Article and Find Full Text PDFSmall Methods
January 2025
Division of Thoracic Tumor Multimodality Treatment, Department of Radiation Oncology, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Cancer Center, Breast Center, Institute of Breast Health Medicine, Laboratory of Clinical Cell Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Non-small cell lung cancer (NSCLC) has a strikingly high incidence rate globally. Although immunotherapy brings a great breakthrough in its clinical treatment of NSCLC, significant challenges still need to be overcome. The development of novel multi-functional nanomedicines in the realm of tumor immunotherapy offers promising opportunities for NSCLC patients, as nanomedicines exhibit significant advantages, including specific targeting of tumor cells, improved drug bioavailability, reduced systemic toxicity, and overcoming of immune resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!