Background: The objective of this study was to develop models for predicting the evolution of a neck pain (NP) episode.

Methods: Three thousand two hundred twenty-five acute and chronic patients seeking care for NP, were recruited consecutively in 47 health care centers. Data on 37 variables were gathered, including gender, age, employment status, duration of pain, intensity of NP and pain referred down to the arm (AP), disability, history of neck surgery, diagnostic procedures undertaken, imaging findings, clinical diagnosis, and treatments used. Three separate multivariable logistic regression models were developed for predicting a clinically relevant improvement in NP, AP and disability at 3 months.

Results: Three thousand one (93.5%%) patients attended follow-up. For all the models calibration was good. The area under the ROC curve was ≥0.717 for pain and 0.664 for disability. Factors associated with a better prognosis were: a) For all the outcomes: pain being acute (vs. chronic) and having received neuro-reflexotherapy. b) For NP: nonspecific pain (vs. pain caused by disc herniation or spinal stenosis), no signs of disc degeneration on imaging, staying at work, and being female. c) For AP: nonspecific NP and no signs of disc degeneration on imaging. d) For disability: staying at work and no signs of facet joint degeneration on imaging.

Conclusions: A prospective registry can be used for developing valid predictive models to quantify the odds that a given patient with NP will experience a clinically relevant improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933702PMC
http://dx.doi.org/10.1186/s12891-019-2962-9DOI Listing

Publication Analysis

Top Keywords

predicting evolution
8
evolution neck
8
pain
8
neck pain
8
acute chronic
8
clinically relevant
8
relevant improvement
8
signs disc
8
disc degeneration
8
degeneration imaging
8

Similar Publications

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.

View Article and Find Full Text PDF

De-novo Genome Assembly of the Edwardsiid Anthozoan Edwardsia elegans.

G3 (Bethesda)

January 2025

Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28223.

Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilaterial animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100s of millions of years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis.

View Article and Find Full Text PDF

Convergent evolution, the evolution of the same or similar phenotypes in phylogenetically independent lineages, is a widespread phenomenon in nature. If the genetic basis for convergent evolution is predictable to some extent, it may be possible to infer organismic phenotypes and the capability of organisms to utilize new ecological resources based on genome sequence data. While repeated amino acid changes have been studied in association with convergent evolution, relatively little is known about the potential contribution of repeated gene copy number changes.

View Article and Find Full Text PDF

Cold climate-driven convergent evolution among angiosperms.

Plant Commun

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University; Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms to sub-zero temperatures. We begin by introducing the research history of convergent and parallel evolution, defining all independent similarities as convergent evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!