We present a 1024-element near-infrared imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32×32 row-column multiplexing architecture. The array has an active area of 0.96 × 0.96 mm, making it the largest SNSPD array reported to date in terms of both active area and pixel count. Using a 64-channel time-tagging readout, we have characterized the array's yield, efficiency, and timing resolution. Large arrays of SNSPDs are desirable for applications such as imaging, spectroscopy, or particle detection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.035279DOI Listing

Publication Analysis

Top Keywords

array superconducting
8
superconducting nanowire
8
active area
8
kilopixel array
4
nanowire single-photon
4
single-photon detectors
4
detectors 1024-element
4
1024-element near-infrared
4
near-infrared imaging
4
imaging array
4

Similar Publications

The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers.

Adv Mater

December 2024

Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!