Conventional optofluidic lens usually has only one interface, which means that the zoom range is small, and the ability to correct aberrations is poor. In this paper, we propose a hybrid driving variable-focus optofluidic lens. It has one water-oil interface shifted by an applied voltage and one tunable Polydimethylsiloxane (PDMS) lens deformed by pumping liquid in or out of the cavity. The proposed lens combines the advantages of electrowetting lens and mechanical lens. Therefore, it can provide a large focal length tuning range with good image quality. The shortest positive and negative focal length are ∼6.02 mm and ∼-11.15 mm, respectively. The maximum resolution of our liquid lens can be reached 18 lp/mm. We also designed and fabricated a zoom system using the hybrid driving variable-focus optofluidic lens. In the experiment, the zoom range of the system is 14 mm∼30 mm and the zoom ratio is ∼2.14× without any mechanical moving parts. Its applications for zoom telescope system and zoom microscope and so on are foreseeable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.035203 | DOI Listing |
Optofluidic devices that dynamically respond to light stimuli have the potential to impart modern adaptive optics with intrinsic optical logic without the need for external power sources or feedback control. While photo actuation is typically associated with low energy efficiency compared with alternative modes of actuation, fluid lenses can be tuned with minimal work by generating small differential pressures across the surface of the lens to drive a change in focal length. In this study, we developed a wide aperture (9.
View Article and Find Full Text PDFHum Reprod
January 2025
Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
Soft Matter
October 2024
NanoEngineering Group, Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Electrowetting on dielectric (EWOD) involves actuating droplets through electrical stimulus while the droplets lie on a dielectric layer that covers the electrode. In order to activate the droplet, a higher threshold voltage is required due to electrowetting hysteresis. The effect of a deformable dielectric layer and its thickness on electrowetting hysteresis has not been studied.
View Article and Find Full Text PDFLab Chip
December 2023
Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms.
View Article and Find Full Text PDFA new lens capability for three-dimensional (3D) focal control is presented using an optofluidic system consisting of n × n arrayed liquid prisms. Each prism module contains two immiscible liquids in a rectangular cuvette. Using the electrowetting effect, the shape of the fluidic interface can be rapidly adjusted to create its straight profile with the prism's apex angle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!