We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transverse trapping potential. Systematic numerical analysis reveals a variety of stable nonlinear modes, including stable fundamental solitons and breathers, as well as solitary vortices with winding number n = 1, while vortices with n = 2 are unstable, splitting into persistently rotating bound states of two unitary vortices. A characteristic feature of the system is bistability between the fundamental and vortex spatiotemporal solitons.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.037364DOI Listing

Publication Analysis

Top Keywords

spatiotemporal dissipative
4
dissipative solitons
4
vortices
4
solitons vortices
4
vortices multi-transverse-mode
4
multi-transverse-mode fiber
4
fiber laser
4
laser introduce
4
introduce model
4
model spatiotemporal
4

Similar Publications

The flat-top beams have significant potential for applications in micromachining and biomedicine, due to their unique intensity distribution. Therefore, spatiotemporal flat-top beams, which are all flat-top in both spatial and time domains, may significantly advance its development. Here, we demonstrate the generation of a spatiotemporal flat-top beam using an all-fiber mode-locked laser.

View Article and Find Full Text PDF

Characterizing dynamic heterogeneities during nanogel degradation.

Soft Matter

January 2025

Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.

Understanding photodegradation of nanogels is critical for dynamic control of their properties and functionalities. We focus on nanogels formed by end-linking of four-arm polyethylene glycol precursors with photolabile groups and characterize dynamic heterogeneities in these systems during degradation. We use our recently developed dissipative particle dynamics framework that captures the controlled scission of bonds between the precursors and diffusion of degraded fragments at the mesoscale.

View Article and Find Full Text PDF

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.

View Article and Find Full Text PDF
Article Synopsis
  • - The research presents a 3D biochip that contains 1024 artificial cells, designed to perform cell-free protein synthesis through genetic circuits on a small 5 × 5 mm area.
  • - The artificial cells are arranged in a 30×30 square lattice connected by capillaries, allowing for diffusion of products and enabling the study of synchronized oscillations within this system.
  • - This setup leads to the emergence of large-scale spatial patterns due to the correlation of oscillations, showcasing the potential for developing advanced synthetic multicellular systems that can produce dynamic behaviors and patterns using genetic programming.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!