A novel fast thermal aberration model for lithographic projection lenses is proposed. In the model, optical intensity calculation is simplified by using pupil intensity mapping, and simplified formulas for temperature calculation are derived to realize fast simulation of thermal aberration. The simulation results using the proposed model are compared with that of experiments carried out on a commercial lithography tool. The R-square of the simulation is better than 0.99 and the simulation time is about 10 minutes. Experiments and simulations show that the model is capable of predicting the thermal aberration or the variation trend of the thermal aberration of lithographic projection lenses fast and accurately. The model is applicable in projection lens design, evaluating degree of production risk posed by thermal aberration, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.034038 | DOI Listing |
Protein Expr Purif
January 2025
Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:
Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.
Understanding metastable structural transitions under beam irradiation is essential for the phase engineering of nanomaterials. However, in situ studies of beam-induced structural transitions remain challenging. This work uses an electron beam in aberration-corrected high-angle annular dark-field scanning transmission electron microscopy to irradiate Au nanocrystals at room temperature.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences.
View Article and Find Full Text PDFInt J Hyperthermia
December 2025
Department of Radiology, University of Wisconsin, Madison, WI, USA.
Purpose: The application of histotripsy, an emerging noninvasive, non-ionizing, and non-thermal tumor treatment, is currently limited by the inherent limitations of diagnostic ultrasound as the sole targeting modality. This study evaluates the feasibility and accuracy of cone beam computed tomography (CBCT) guidance for histotripsy treatments in an porcine model.
Materials And Methods: Histotripsy treatments were performed in the liver of seven healthy swine under the guidance of a C-arm CBCT system that was calibrated to the robotic arm of the histotripsy system.
ACS Biomater Sci Eng
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!