Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe a new approach to scanning magneto-optical Kerr effect (MOKE) microscopy in which two opto-mechanical choppers modulate the spatial profile of a probe laser beam to separately encode all three magnetization components at different frequencies and phases in one signal. We demonstrate this multiplexed technique in two representative regimes: the equilibrium and non-equilibrium response of a magnetic vortex to a changing magnetic field. We observe the translation of the vortex state in equilibrium and the spiraling gyrotropic trajectory of the vortex position out of equilibrium. We compare the results to a traditional MOKE measurement and to micromagnetic simulations. We find that the multiplexed method presented here provides better agreement with simulation than previous methods and equal or better signal-to-noise ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.033942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!