Glare and visual discomfort are important factors that should be taken into account in illumination design. Conventional freeform lenses offer perfect control over the outgoing intensity distribution, thereby allowing optical radiation patterns with sharp cut-offs in order to optimize the unified glare rating index. However, these freeform lenses do not offer control over the near-field luminance distribution. Observing the emitted light distribution from a high-brightness LED through a freeform lens gives a high peak luminance that can result in glare. To reduce this peak luminance, freeform lenses should be used in conjunction with light diffusing structures. However, this diminishes the control over the outgoing intensity distribution what is the main benefit of a freeform lens. Another approach to reduce the observed peak luminance, is by spreading the emitted light over multiple optical channels via freeform lens arrays. This paper proposes a novel method to design luminance spreading freeform lens arrays that offer perfect control over the resulting intensity pattern. The method is based on a non-invertible mapping of a 2D parameter space. This results in a source-target mapping in which multiple ingoing ray directions are mapped onto every position of the target distribution. The case of continuous and discontinuous mappings are both discussed in this paper. Finally, the example of a discontinuous freeform lens array with 7×7 individual lenses is designed and experimentally demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.032994DOI Listing

Publication Analysis

Top Keywords

freeform lens
24
luminance spreading
12
lens arrays
12
freeform lenses
12
peak luminance
12
freeform
9
spreading freeform
8
lenses offer
8
offer perfect
8
perfect control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!