Application of Impedance-Based Techniques in Hepatology Research.

J Clin Med

The University of Edinburgh Hepatology Laboratory, Division of Heath Sciences, University of Edinburgh Medical School, Chancellor's Building, Edinburgh BioQuarter, 49 Little France Crescent, EH16 4SB Edinburgh, UK.

Published: December 2019

There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells. While the uses of IBCA have been widely reported for a number of tissues, specific uses in the study of hepatic cell cultures have not been reported to date. IBCA monitors cellular behaviour throughout experimentation non-invasively without labelling or damage to cell cultures. The data extrapolated from IBCA can be correlated to biological events happening within the cell and therefore may inform drug toxicity studies or other applications within hepatic research. Because tight junctions comprise the blood/biliary barrier in hepatocytes, there are major consequences when these junctions are disrupted, as many pathologies centre around the bile canaliculi and flow of bile out of the liver. The application of IBCA in hepatology provides a unique opportunity to assess cellular polarity and patency of tight junctions, vital to maintaining normal hepatic function. Here, we describe how IBCAs have been applied to measuring the effect of viral infection, drug toxicity /IC50, cholangiopathies, cancer metastasis and monitoring of the gut-liver axis. We also highlight key areas of research where IBCAs could be used in future applications within the field of hepatology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019217PMC
http://dx.doi.org/10.3390/jcm9010050DOI Listing

Publication Analysis

Top Keywords

cell cultures
12
hepatic cell
8
drug toxicity
8
tight junctions
8
cell
6
application impedance-based
4
impedance-based techniques
4
techniques hepatology
4
hepatology variety
4
variety end-point
4

Similar Publications

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research.

Cancers (Basel)

January 2025

Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.

: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.

View Article and Find Full Text PDF

Differential Mitochondrial Redox Responses to the Inhibition of NAD Salvage Pathway of Triple Negative Breast Cancer Cells.

Cancers (Basel)

December 2024

Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.

View Article and Find Full Text PDF

Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!