An Ab Initio Study of Magnetism in Disordered Fe-Al Alloys with Thermal Antiphase Boundaries.

Nanomaterials (Basel)

Institute of Physics of Materials, v.v.i., Czech Academy of Sciences, Žižkova 22, CZ-616 62 Brno, Czech Republic.

Published: December 2019

We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special quasi-random structure (SQS) concept. Our study was motivated by experimental findings by Murakami et al. (Nature Comm. 5 (2014) 4133) who reported significantly higher magnetic flux density from A2-phase interlayers at the thermally-induced APBs in Fe 70 Al 30 and suggested that the ferromagnetism is stabilized by the disorder in the A2 phase. Our computational study of sharp APBs (without any A2-phase interlayer) indicates that they have moderate APB energies (≈0.1 J/m 2 ) and cannot explain the experimentally detected increase in the ferromagnetism because they often induce a ferro-to-ferrimagnetic transition. When studying thermal APBs, we introduce a few atomic layers of A2 phase of Fe 70 Al 30 into the interface of sharp APBs. The averaged computed magnetic moment of Fe atoms in the whole B2/A2 nanocomposite is then increased by 11.5% w.r.t. the B2 phase. The A2 phase itself (treated separately as a bulk) has the total magnetic moment even higher, by 17.5%, and this increase also applies if the A2 phase at APBs is sufficiently thick (the experimental value is 2-3 nm). We link the changes in the magnetism to the facts that (i) the Al atoms in the first nearest neighbor (1NN) shell of Fe atoms nonlinearly reduce their magnetic moments and (ii) there are on average less Al atoms in the 1NN shell of Fe atoms in the A2 phase. These effects synergically combine with the influence of APBs which provide local atomic configurations not existing in an APB-free bulk. The identified mechanism of increasing the magnetic properties by introducing APBs with disordered phases can be used as a designing principle when developing new magnetic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022334PMC
http://dx.doi.org/10.3390/nano10010044DOI Listing

Publication Analysis

Top Keywords

antiphase boundaries
8
apbs
8
sharp apbs
8
magnetic moment
8
1nn shell
8
shell atoms
8
phase
7
atoms
6
magnetic
6
initio study
4

Similar Publications

The lithium lanthanum titanium oxide (LLTO) perovskite is one type of superior lithium (Li)-ion conductor that is of great interest as a solid-state electrolyte for all-solid-state lithium batteries. Structural defects and impurity phases formed during the synthesis of LLTO largely affect its Li-ion conductivity, yet the underlying Li diffusion mechanism at the atomic scale is still under scrutiny. Herein, we use aberration-corrected transmission electron microscopy to perform a thorough structural characterization of the LLTO ceramic pellet.

View Article and Find Full Text PDF
Article Synopsis
  • - Manganese-based materials are promising candidates for next-generation lithium-ion batteries due to their abundance, low cost, and stability, particularly as cathodes.
  • - The study demonstrates that slight heating of high-manganese disordered rocksalt cathodes creates nanosized spinel domains, which improve electrochemical properties by eliminating harmful lithiation reactions.
  • - The resulting nanostructure allows for better performance, achieving a discharge capacity of 200 mAh g in a material with a primary particle size of about 5 µm, and highlights new methods for building efficient manganese-based cathodes.
View Article and Find Full Text PDF

The pressure-induced structural changes in the perovskite-type (ABO ) ferroelectric solid solution (1-x)Na Bi TiO -xBaTiO (NBT-xBT) at the morphotropic phase boundary (MPB) ( ) have been analyzed up to 12.3 GPa by single-crystal x-ray diffraction with synchrotron radiation. A pressure-induced phase transition takes place between 4.

View Article and Find Full Text PDF

An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys.

Nat Commun

August 2024

Laboratory of Nanomaterials & Nanomechanics, Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.

Nanocrystalline metallic materials have the merit of high strength but usually suffer from poor ductility and rapid grain coarsening, limiting their practical application. Here, we introduce a core-shell nanostructure in a multicomponent alloy to address these challenges simultaneously, achieving a high tensile strength of 2.65 GPa, a large uniform elongation of 17%, and a high thermal stability of 1173 K.

View Article and Find Full Text PDF

Mn-inlaid antiphase boundaries in perovskite structure.

Nat Commun

August 2024

Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China.

Improvements in the polarization of environmentally-friendly perovskite ferroelectrics have proved to be a challenging task in order to replace the toxic Pb-based counterparts. In contrast to common methods by complex chemical composition designs, we have formed Mn-inlaid antiphase boundaries in Mn-doped (K,Na)NbO thin films using pulsed laser deposition method. Here, we observed that mono- or bi-atomic layer of Mn has been identified to inlay along the antiphase boundaries to balance the charges originated from the deficiency of alkali ions and to induce the strain in the KNN films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!