Sheep () is one of the most economically, culturally, and socially important domestic animals. They are reared primarily for meat, milk, wool, and fur production. Sheep were reared using natural selection for a long period of time to offer these traits. In fact, this production system has been slowing the productivity and production potential of the sheep. To improve production efficiency and productivity of this animal through genetic improvement technologies, understanding the genetic background of traits such as body growth, weight, carcass quality, fat percent, fertility, milk yield, wool quality, horn type, and coat color is essential. With the development and utilization of animal genotyping technologies and gene identification methods, many functional genes and genetic variants associated with economically important phenotypic traits have been identified and annotated. This is useful and presented an opportunity to increase the pace of animal genetic gain. Quantitative trait loci and genome wide association study have been playing an important role in identifying candidate genes and animal characterization. This review provides comprehensive information on the identified genomic regions and candidate genes associated with production and reproduction traits, and gene function in sheep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022721 | PMC |
http://dx.doi.org/10.3390/ani10010033 | DOI Listing |
J Assist Reprod Genet
January 2025
Medical Genetics Laboratory, Shiraz Fertility Center, Shiraz, Iran.
Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.
Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.
Neuromolecular Med
January 2025
Department of Neurology, Puren Hospital Affliated to Wuhan University of Science and Technology, No. 1, Benxi Street, Wuhan City, 430081, Hubei Province, China.
Sleep deprivation (SD) impairs learning and memory. Investigating the role of epigenetic modifications, such as 5-methylcytosine (mC), in SD is crucial. This study established an SD mouse model and assessed the mRNA levels of mC-related genes in brain tissue to identify potential candidates.
View Article and Find Full Text PDFNat Genet
January 2025
Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
Autism spectrum disorder (ASD) affects up to 1 in 59 children, and is one of the most common neurodevelopmental disorders. Recent genomic studies have highlighted the role of rare variants in ASD. This study aimed to identify genes affected by rare variants shared by siblings with ASD and validate the function of a candidate gene FRRS1L.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Biology, Boston University, Boston Massachusetts, United States of America.
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!