Inertial sensors are a useful instrument for long term monitoring in healthcare. In many cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing multiple devices every day, in approximately the same location, with less likelihood of incorrect sensor orientation. To facilitate this, the current work investigates the consequences of attaching lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these clothing sensors compare with similarly placed body worn sensors, with additional consideration of the resulting effects on activity recognition. This study compares the similarity between the two signals (body worn and clothing), collected from three different clothing types (slacks, pencil skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus) by calculating correlation coefficients for each sensor pair. Even though the two data streams are clearly different from each other, the results indicate that there is good potential of achieving high classification accuracy when using inertial sensors in clothing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983049 | PMC |
http://dx.doi.org/10.3390/s20010082 | DOI Listing |
Sports (Basel)
January 2025
Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain.
This study presents a novel system for diagnosing and evaluating soccer performance using wearable inertial sensors integrated into players' insoles. Designed to meet the needs of professional podiatrists and sports practitioners, the system focuses on three key soccer-related movements: passing, shooting, and changes of direction (CoDs). The system leverages low-power IMU sensors, Bluetooth Low Energy (BLE) communication, and a cloud-based architecture to enable real-time data analysis and performance feedback.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
Adequate reference procedures for obtaining the reference zero-angle position are important for precise and accurate posture measurements, but few studies have systematically investigated these. A limited number of previous studies suggest differences in accuracy between procedures, with some causing an underestimation of the true arm elevation angle when sensors are taped to the skin. The reliability of commonly used reference procedures for the measurement of the trunk posture is also not well explored, and alternative procedures may improve precision.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Human Performance Laboratory, Centre of Space Bio-Medicine, Department of Medicine Systems, University of Rome Tor Vergata, 00133 Rome, Italy.
Traditional methods for evaluating tennis technique, such as visual observation and video analysis, are often subjective and time consuming. On the other hand, a quick and accurate assessment can provide immediate feedback to players and contribute to technical development, particularly in less experienced athletes. This study aims to validate the use of a single inertial measurement system to assess some relevant technical parameters of amateur players.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Laboratory of Otoneurology British Hospital, Montevideo, Uruguay.
Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.
Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!