Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we performed detailed Small-Angle X-ray Scattering (SAXS) analysis of EPAC1 in its apo (inactive), cAMP-bound, and effector (Rap1b)-bound states. Our study demonstrates that we can model the solution structures of EPAC1 in each state using ensemble analysis and homology models derived from the crystal structures of EPAC2. The -terminal domain of EPAC1, which is not conserved between EPAC1 and EPAC2, appears folded and interacts specifically with another component of EPAC1 in each state. The apo-EPAC1 state is a dynamic mixture of a compact (Rg = 32.9 Å, 86%) and a more extended (Rg = 38.5 Å, 13%) conformation. The cAMP-bound form of EPAC1 in the absence of Rap1 forms a dimer in solution; but its molecular structure is still compatible with the active EPAC1 conformation of the ternary complex model with cAMP and Rap1. Herein, we show that SAXS can elucidate the conformational states of EPAC1 activation as it proceeds from the compact, inactive apo conformation through a previously unknown intermediate-state, to the extended cAMP-bound form, and then binds to its effector (Rap1b) in a ternary complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016869PMC
http://dx.doi.org/10.3390/cells9010035DOI Listing

Publication Analysis

Top Keywords

epac1
10
conformational states
8
directly activated
8
activated camp
8
camp epac1
8
epac1 epac2
8
epac1 state
8
camp-bound form
8
ternary complex
8
states exchange
4

Similar Publications

Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for studying second messengers with high temporal and spatial resolution. FRET is commonly detected by ratio imaging, but fluorescence lifetime imaging microscopy (FLIM), which measures the donor fluorophore's lifetime, offers a robust and more quantitative alternative. We have introduced and optimized four generations of FRET sensors for cAMP, based on the effector molecule Epac1, including variants for either ratio imaging or FLIM detection.

View Article and Find Full Text PDF

Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy.

Pharmacol Res

January 2025

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China. Electronic address:

Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate how a specific extract protects against mitochondrial damage in mice with atherosclerosis, focusing on its chemical composition and efficacy using advanced analytical techniques.
  • Results showed that the extract significantly boosted heart and mesenteric microcirculation, lowered harmful lipid levels, and enhanced ATP levels, indicating improved mitochondrial function and lipid metabolism.
  • The mechanism behind these effects involves the PGC-1α/Sirt3/Epac1 signaling pathway, with the extract increasing beneficial protein markers while reducing those associated with cell death.
View Article and Find Full Text PDF

Estrogen is a steroid hormone that plays a key role in regulating many physiological processes, such as follicle activation and development and oocyte maturation in mammals. Ca is crucial in oogenesis, oocyte maturation, ovulation, and fertilization. However, the mechanism by which estrogen regulates Ca during oocyte maturation in mice has not been reported.

View Article and Find Full Text PDF

Epac1 activation optimizes cellular functions of BMSCs and promotes wound healing via Erk/ACLY/PGC-1α signaling pathway.

Eur J Pharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. Electronic address:

Restrained cell function of relocated bone marrow mesenchymal stem cells (BMSCs) largely impedes the clinical benefits of BMSCs-mediated tissue repair. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, has a potential role in regulating cell migration and proliferation by triggering the downstream Rap signaling. However, whether and how Epac may exert effects on BMSCs' bioactivity have less been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!