A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparative study of hyperelastic constitutive models for colonic tissue fitted to multiaxial experimental testing. | LitMetric

A comparative study of hyperelastic constitutive models for colonic tissue fitted to multiaxial experimental testing.

J Mech Behav Biomed Mater

Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragón Institute for Engineering Research, Zaragoza, Spain. Electronic address:

Published: February 2020

For colonic stents design, the interaction with colonic tissue is essential in order to characterize the appropriate radial stiffness which provides a minimum lumen for intestinal transit to be maintained. It is therefore important to develop suitable constitutive models allowing the mechanical behavior of the colon tissue to be characterized. The present work investigates the biomechanical behavior of colonic tissue by means of biaxial tests carried out on different parts of the colonic tract taken from several porcine specimens. Samples from the colonic tract were quasi-statically tensioned using a load-controlled protocol with different tension ratios between the circumferential and the axial directions. Fitting techniques were then used to adjust specific hyperelastic models accounting for the multilayered conformation of the colonic wall and the fiber-reinforced configuration of the corresponding tissues. It was found that the porcine colon changed from a more isotropic to a more anisotropic tissue and became progressively more flexible and compliant in circumferential direction depending on the position along the duct as it approaches the rectum. The best predictive capability of mechanical behavior corresponds to the Four Fiber Family model showing mean values of coefficient of determination R=0.97, and a normalized root mean square error of ε=0.0814 for proximal spiral samples, and R=0.89 , ε=0.1600 and R=0.94 , ε=0.1227 for distal spiral and descending colon samples, respectively. The other analyzed models provide good results for proximal spiral colon specimens, which have a lower degree of anisotropy. The analyzed models with the fitted elastic parameters can be used for more realistic and reliable FE simulations, providing the appropriate framework for the design of optimal devices for the treatment of colonic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.103507DOI Listing

Publication Analysis

Top Keywords

colonic tissue
12
constitutive models
8
colonic
8
mechanical behavior
8
colonic tract
8
proximal spiral
8
analyzed models
8
models
5
tissue
5
comparative study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!