Objective: The pedunculopontine nucleus (PPN) has been proposed as a new deep brain stimulation (DBS) target for the treatment in idiopathic Parkinson's syndrome (IPS) and progressive supranuclear palsy (PSP). In IPS, levodopa has been shown to induce alpha activity in the PPN, indicating a possible physiological role for these oscillations in movement control. Despite shared clinical features, the PPN is more severely affected in PSP than IPS. Here we investigated neuronal oscillations in the PPN in PSP and the influence of levodopa and movement.

Methods: Local field potentials were recorded bilaterally from the PPN of 4 PSP patients at rest, with levodopa and during self-paced leg movements.

Results: During rest, levodopa administration was associated with significantly increased alpha and reduced gamma activity in the PPN. Without levodopa, continuous movements were associated with reduced alpha and beta power. These differences between oscillatory power during movement and resting state were not observed with levodopa administration.

Conclusion: In PSP the changes in neuronal oscillations in the PPN region on levodopa administration are similar to those reported in IPS. The enhancement of lower frequency oscillations in the PPN is possibly influenced by a dopaminergic activation of the striatal pathway and a reduced pallidal inhibition.

Significance: Levodopa influences neuronal oscillations at low and high frequencies in the PPN region in Parkinsonian disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2019.11.033DOI Listing

Publication Analysis

Top Keywords

neuronal oscillations
16
oscillations ppn
12
levodopa
9
ppn
9
pedunculopontine nucleus
8
progressive supranuclear
8
supranuclear palsy
8
influence levodopa
8
psp ips
8
activity ppn
8

Similar Publications

Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.

View Article and Find Full Text PDF

Attention deficit/hyperactive disorder is increasing in prevalence among children all over the world which affects the children's communication, learning, and behavior, which in turn affects the quality of life. The depolarization of neurons is modulated by neural stimulation which triggers activity-based mechanisms of neuroplasticity. An external periodic stimulus that can modify the oscillations of the brain through synchronization is called entrainment.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

This study presents a family of coexisting multi-scroll chaos in a network of coupled non-oscillatory neurons. The dynamics of the system are analyzed using phase portraits, basins of attraction, time series, bifurcation diagrams, and spectra of Lyapunov exponents. The coexistence of multiple bifurcation diagrams leads to a complex pattern of multi-scroll formation, which is further complicated by the presence of coexisting single-scroll attractors that merge to form multi-scroll chaos.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!