A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic oxidation - filtration process analysis of catalytic CuFeO - Tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment. | LitMetric

This work synthesized catalytic CuFeO tailored ceramic membrane (CuFeCM), and systematically investigated the intercorrelated oxidation - filtration mechanism of peroxymonosulfate (PMS)/CuFeCM catalytic filtration for treating humic acid (HA). PMS/CuFeCM filtration exhibited enhanced HA removal efficiency while reduced the irreversible fouling resistance as compared with the conventional CM filtration. Results from HA characterizations showed that PMS/CuFeCM catalytic filtration oxidized HA into conjugated structures of smaller molecular weight. The unsaturated bonds further caused the re-agglomeration of HA, hence enhancing the size exclusion of CuFeCM. Meanwhile, oxidized HA particles with changing physicochemical properties reduced the total attractive interaction energy between CuFeCM and HA, mainly attributed to the reduced acid-base interaction energy according to the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. The changing of HA properties and HA-CuFeCM physicochemical interactions rendered more re-agglomerated HA particles retained above membrane with less attachment, which induced decreasing irreversible fouling resistance and facilitated easier external fouling removal by hydraulic cleaning. Overall, the PMS/CuFeCM configuration demonstrated in this study could provide a new insight into the synergistic oxidation - filtration interaction mechanism of hybrid catalytic ceramic membrane filtration process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.115387DOI Listing

Publication Analysis

Top Keywords

oxidation filtration
12
ceramic membrane
12
filtration
9
synergistic oxidation
8
filtration process
8
catalytic cufeo
8
cufeo tailored
8
tailored ceramic
8
membrane filtration
8
humic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!