Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure to metals and metal-based nano- (NPs, 1-100 nm) and submicron-particles (SPs, 0.1-1 μm) contained in tattoo inks and related health safety is currently receiving a great deal of interest. Twenty inks of different brands and colours were sampled in Italy in 2019. The SemiQuant Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis allowed quantifying the concentration of 18 metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Ti, Zn) in inks. The Single Particle ICP-MS was used to detect the diameters and concentration of NPs and SPs of 9 metals (Al, Co, Cr, Cu, Hg, Ni, Pb, Ti and Zn). Concentration of metals in tattoo inks were below the recommended concentrations reported in the Resolution ResAP (2008)1 indicating ink production have shifted to purer materials and best manufacturing practices. Regarding particles, Al was found at nano- (62-80 nm) and submicron-sizes (105-140 nm). Sizes of Cr, Cu, Pb and Zn were in the intervals 42-62 nm, 44-96 nm, 26-28 nm and 26-59 nm, respectively. Titanium was at submicron-diameters (166-383 nm). In addition, Cr and Ti particles accounted for the 47% and 80% of their total concentration, respectively. Tattooing practice exposed humans to metal-based NPs and SPs and the presence of a combination of particles of different metals and/or their dynamics (e.g., dissolution) may change their bioavailability and toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!