Feasibility of cationic carbosilane dendrimers for sustainable protein sample preparation.

Colloids Surf B Biointerfaces

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain. Electronic address:

Published: February 2020

Protein sample preparation is the bottleneck in the analysis of proteins. The aim of this work is to evaluate the feasibility of carbosilane dendrimers functionalized with cationic groups to make easier this step. Anionic carbosilane dendrimers (sulphonate- and carboxylate-terminated) have already demonstrated their interaction with proteins and their potential in protein sample preparation. In this work, interactions between positively charged carbosilane dendrimers and different model proteins were studied when working under different pH conditions, dendrimer concentrations, and dendrimer generations. Amino- and trimethylammonium-terminated carbosilane dendrimers presented, in some cases, weak interactions with proteins. Unlike them, carbosilane dendrimers with terminal dimethylamino groups could interact, in many cases, with proteins and these interactions were affected by the pH, the dendrimer concentration, and the dendrimer generation. Moreover, dendrimer precipitation was observed at all pHs, although just second and fourth generation (2 G and 4 G) dendrimers resulted in the formation of complexes with proteins. Under experimental conditions promoting dendrimer-protein interactions, 2 G dimethylamino-terminated dendrimers were proposed as an alternative to other methods used in analytical chemistry or analysis in which an organic solvent or a resin are required to enrich/purify proteins in a complex sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.110746DOI Listing

Publication Analysis

Top Keywords

carbosilane dendrimers
24
protein sample
12
sample preparation
12
dendrimers
8
proteins
7
carbosilane
6
dendrimer
5
feasibility cationic
4
cationic carbosilane
4
dendrimers sustainable
4

Similar Publications

Molecular interactions driving the complexation of rose bengal by triazine-carbosilane dendrons.

Nanoscale

December 2024

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers.

View Article and Find Full Text PDF

Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity.

View Article and Find Full Text PDF

Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.

View Article and Find Full Text PDF

Ruthenium(II) complexes containing PEGylated N-heterocyclic carbene ligands for tunning biocompatibility in the fight against cancer.

J Inorg Biochem

January 2025

University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain. Electronic address:

A synthetic procedure was designed for the preparation and characterization of Ag and Ru complexes containing NHC ligands functionalized with PEG fragments. Stability studies were conducted to gain insight of the species in water and other solvents like DMSO, or with reagents like imidazole as representative group for histidine amino acid. The presence of Cl atoms instead of H in the 4,5 positions of the N-heterocyclic carbene afforded higher water stability.

View Article and Find Full Text PDF

Transfection efficiency is a critical parameter in gene therapy and molecular biology, representing the success rate at which nucleic acids are introduced and expressed in target cells. The combination of aptamers with nanotechnology-based delivery systems has demonstrated remarkable improvements in the transfection efficiency of therapeutic agents and holds significant potential for advancing gene therapy and the development of targeted treatments for various diseases, including cancer. In this work, cationic carbosilane dendritic systems are presented as an alternative to commercial transfection agents, demonstrating an increase in transfection efficiency when used for the internalization of apMNKQ2, an aptamer selected against a target in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!