While silver nanoparticles (AgNP) are used in topical treatments and medical devices for humans, no smooth, safe remedy exists to remove them and avoid possible post-treatment uptake in the body. We show here that cysteamine hydrochloride (CYS∙HCl), a simple FDA and EMA approved molecule, is able to dramatically accelerate the otherwise extremely slow oxidation of citrate-coated AgNP by O in a wide range of pH, including the physiological 7.4 value, obtaining the halving of AgNP concentration in t < 10 min. The dependence of oxidation kinetics on CYS concentration and pH is studied, finding faster processes on increasing CYS and basicity, despite the decrease of O reduction potential. Complexation and electrochemical studies demonstrate that CYS adhesion to AgNP surface followed by formation of 1:2 Ag:CYS complex is the driving force for the AgNP oxidation, this also giving a definitive explanation to the otherwise still unclear phenomenon of AgNP etching by thiols. The efficacy of CYS∙HCl is verified also on AgNP coated with pectin and PEG-SH, and on AgNP immobilized on surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.12.081 | DOI Listing |
Pharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt.
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!