Atomic Decomposition Scheme of Noncovalent Interactions Applied to Host-Guest Assemblies.

J Chem Inf Model

Institut de Chimie Moléculaire de Reims UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse , 51687 Reims Cedex 02 BP39, France.

Published: January 2020

The design of novel stimuli-responsive supramolecular systems based on host-guest chemistry implies a thorough understanding of the noncovalent interactions involved. In this regard, some computational tools enabling the extraction of the noncovalent signatures from local descriptors based on the electron density have been previously proposed. Although very useful to detect the existence of such interactions, these analyses provide only a semi-quantitative description, which represents a limitation. In this work, we present a novel computational tool based on the local atomic descriptor IGM-δ, which is able to decompose the fragment interaction into atomic contributions. Then, the role played by each atom in the formation of the host-guest assembly is quantified by an integrated Δ score. Herein, we apply the IGM-Δ approach to some challenging systems, including multimetallic arrays, buckycatchers, and organic assemblies. These systems exhibit unique structural features that make it difficult to determine the host/guest atoms that contribute the most to the guest encapsulation. Here, the Δ score proves to be an appealing tool to shed light on the guest accommodation on a per-atom basis and could be useful in the rational design of more selective target agents. We strongly believe that this novel approach will be useful for experimental teams devoted to the synthesis of supramolecular systems based on host-guest chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.9b01016DOI Listing

Publication Analysis

Top Keywords

noncovalent interactions
8
supramolecular systems
8
systems based
8
based host-guest
8
host-guest chemistry
8
atomic decomposition
4
decomposition scheme
4
scheme noncovalent
4
interactions applied
4
host-guest
4

Similar Publications

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.

View Article and Find Full Text PDF

In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix structure of the TA-gluten complex using fluorescence quenching, molecular docking, and confocal laser scanning microscopy. TA strongly interacted with gluten via non-covalent interactions, mainly hydrogen bonds, and formed the major hydrogen bonds with six different glutamines (Q32, Q108, Q313, Q317, Q317, and Q349), which play a critical role in gluten network construction among amino acid residues of gluten.

View Article and Find Full Text PDF

Using Commercial Bio-Functional Fungal Polysaccharides to Construct Emulsion Systems by Associating with SPI.

Foods

January 2025

Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.

Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of (AA) and (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!