The design of novel stimuli-responsive supramolecular systems based on host-guest chemistry implies a thorough understanding of the noncovalent interactions involved. In this regard, some computational tools enabling the extraction of the noncovalent signatures from local descriptors based on the electron density have been previously proposed. Although very useful to detect the existence of such interactions, these analyses provide only a semi-quantitative description, which represents a limitation. In this work, we present a novel computational tool based on the local atomic descriptor IGM-δ, which is able to decompose the fragment interaction into atomic contributions. Then, the role played by each atom in the formation of the host-guest assembly is quantified by an integrated Δ score. Herein, we apply the IGM-Δ approach to some challenging systems, including multimetallic arrays, buckycatchers, and organic assemblies. These systems exhibit unique structural features that make it difficult to determine the host/guest atoms that contribute the most to the guest encapsulation. Here, the Δ score proves to be an appealing tool to shed light on the guest accommodation on a per-atom basis and could be useful in the rational design of more selective target agents. We strongly believe that this novel approach will be useful for experimental teams devoted to the synthesis of supramolecular systems based on host-guest chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.9b01016 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
The journal's Editorial Office and Editorial Board are jointly issuing a resolution and removal of the Journal Notice linked to this article [...
View Article and Find Full Text PDFFoods
January 2025
Department of Food Bioengineering, Jeju National University, Jeju 63243, Republic of Korea.
In this study, we explored the binding mechanism between tannic acid (TA) and gluten to apply TA as an ingredient in bread-making to evaluate its baking performance and starch digestion. The interaction was systematically investigated by analyzing binding affinity, binding mode, and matrix structure of the TA-gluten complex using fluorescence quenching, molecular docking, and confocal laser scanning microscopy. TA strongly interacted with gluten via non-covalent interactions, mainly hydrogen bonds, and formed the major hydrogen bonds with six different glutamines (Q32, Q108, Q313, Q317, Q317, and Q349), which play a critical role in gluten network construction among amino acid residues of gluten.
View Article and Find Full Text PDFFoods
January 2025
Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of (AA) and (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!