Based on carbon fibers (CFs) delivered localized electrical induction heat, a novel electrical induction framework synthesis (EIFS) strategy has been developed to in-situ grow versatile metal-organic frameworks (MOFs) on CFs, resulting in the production of a set of MOF-coated CF (MOF@CF) fibers. Detailed studies on the production of UiO-66-NH@CFs indicate that the use of EIFS leads to dramatically accelerated MOF growth at dozen times higher reaction rate than that of the conventional solvothermal reaction. By periodically switching anodes during EIFS reactions, uniform MOF@CF fibers with well-controlled MOF loadings have been achieved depending on the reaction conditions. Mediated by the embedded CFs in the resulting MOF@CFs, MOF@CFs exhibit well-regulated electrical induction heating capacities depending on MOF loadings and the applied voltages. Driven by such localized heat, up to 100% of the adsorbed CO in UiO-66-NH@CF can be rapidly released, demonstrating an electrical induction framework regeneration (EIFR) process for highly efficient regeneration of MOFs. As CFs enable to rapidly deliver localized electrical induction with over 90% of electrothermal conversion efficiency and at rather low operation voltage, currently developed EIFS and EIFR process provide a highly efficient, low-energy, low operation cost, and safe way to highly efficient synthesis and regeneration of MOF materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b19216 | DOI Listing |
Sci Rep
January 2025
Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.
There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, 61421, Abha, KSA, Saudi Arabia.
The direct power control (DPC) algorithm is one of the most popular linear techniques used to implement notable controllers, known for their simplicity and fast dynamic response. However, this approach has drawbacks that cause a decrease in the current quality and disturbances in the network. Therefore, this experimental work presents a simple and efficient solution that uses a proportional-integral regulator based on a genetic algorithm to regulate the power quality.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Daegu Catholic University, Daegu, Daegu Metropolitan City, Korea, Republic of (South).
Background: The interplaying neuropathology of amyloid plaque, tau tangles, and microglia-driven inflammation (tri-pathology) are related to neuronal and synaptic loss damage in Alzheimer's damages. Interventions that target Aβ or tau individually have not yielded substantial breakthroughs. Iron plays a pivotal role in tri-pathology by protein-bound iron-oxide deposition in amyloid plaque, tau tangle, and microglia, resulting in redox-active toxicity or microglial response induction, such as proinflammatory activation, autophagy dysfunction, and ferroptosis.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Institute of Cognitive Neuroscience, National Central University, Taiwan.
Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!