This study focuses on the effect of miR-129-5p on docetaxel-resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT-PCR in PCa patient tissues and cell lines including PC-3 and PC-3-DR. Cells transfected with miR-129-5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR-129-5p and CAMK2N1 levels were identified by qRT-PCR and dual-luciferase reporter assay. CAMK2N1 was found to be down-expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up-regulation of miR-129-5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR-129-5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR-129-5p contributed to the resistance of PC-3-DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR-129-5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011149 | PMC |
http://dx.doi.org/10.1111/jcmm.14050 | DOI Listing |
Stem Cell Res
January 2025
Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China. Electronic address:
Prostate cancer (PCa) is the most common malignant tumor of the male reproductive system. In this study, we establish an induced pluripotent stem cell (iPSC) line from a male diagnosed with PC. of This iPSCs line was generated from the peripheral blood mononuclear cells (PBMCs) using a non-integrated Sendai virus.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
Lung malignancies, including cancerous lymphangitis and lymphomas, can mimic interstitial lung diseases like cryptogenic organizing pneumonia (COP) on imaging, leading to diagnostic delays. We aimed to identify potential biomarkers to distinguish between these conditions. We analyzed bronchoalveolar lavage fluid from 8 patients (4 COP, mean age 59.
View Article and Find Full Text PDFBiomolecules
December 2024
Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
Prostate cancer (PCa) pathogenesis relies on intercellular communication, which can involve tunnelling nanotubes (TNTs) and extracellular vesicles (EVs). TNTs and EVs have been reported to transfer critical cargo involved in cellular functions and signalling, prompting us to investigate the extent of organelle and protein transfer in PCa cells and the potential involvement of the androgen receptor. Using live cell imaging microscopy, we observed extensive formation of TNTs and EVs operating between PCa, non-malignant, and immune cells.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Vocational School of Health Services, Akdeniz University, 07058 Antalya, Turkey.
Colistin-resistant (COLR-Ab) is an opportunistic pathogen commonly associated with nosocomial infections, and it is difficult to treat with current antibiotics. Therefore, new antimicrobial agents need to be developed for treatment. Based on this information, we investigated the antimicrobial, antibiofilm, and combination activities of -coumaric acid (-CA), ferulic acid (FA), and -methoxycinnamic acid (-MCA) against five COLR-Ab isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!