Qβ phage replicase has been the first RNA-directed RNA polymerase purified to homogeneity and intensively studied in vitro. In the mid-sixties, papers on Qβ and related replicases appeared in nearly every issue of the PNAS journal. By 1968, the mechanism of its action seemed to be almost completely understood. However, even now, a half of century later, a number of fundamental questions remains unanswered. How does the replicase manage to prevent the template and its complementary copy from annealing during the entire replication round? How does it recognize its templates? What is the function of the translation factors present in the replicase molecule? What is the mechanism the replicase uses to join (recombine) separate RNA molecules? Even the determination of the crystal structure of Qβ replicase did not help much. Certainly, there remains a lot to discover in the replication of Qβ phage, one of the smallest viruses known.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0026898419060041DOI Listing

Publication Analysis

Top Keywords

qβ phage
8
5
replicase
5
[unsolved puzzles
4
puzzles qβ
4
qβ replicase]
4
replicase] qβ
4
phage replicase
4
replicase rna-directed
4
rna-directed rna
4

Similar Publications

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Cad1 turns ATP into phage poison.

Cell Host Microbe

January 2025

Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Copenhagen, Denmark. Electronic address:

Type III CRISPR-Cas executes a multifaceted anti-phage response, activating effectors such as a nuclease or membrane depolarizer. In a recent Cell paper, Baca and Majumder et al. report an accessory effector, Cad1, which deaminates ATP into ITP, causing ITP accumulation and host growth arrest, thereby inhibiting phage propagation.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) has the advantages of simplicity and rapidness, and is widely used for the rapid detection of pesticides and other analytes. However, small molecule compounds such as pesticides are often analyzed using competitive LFIA (CLFIA), whose sensitivity often does not meet the actual needs. In this study, a noncompetitive LFIA (NLFIA) for deltamethrin (DM) with high sensitivity was developed by using anti-immunocomplex peptides (AIcPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!