Effects of plant growth regulator application on the malting quality of barley.

J Sci Food Agric

Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada.

Published: March 2020

Background: Lodging can negatively affect yield and quality of barley grain. Synthetic plant growth regulators (PGRs) reduce lodging by producing shorter, thicker, and stronger stems. However, the impact of applying PGRs on malting performance of barley is not known. The objective of this work was to assess the effect of application of three PGRs (ethephon, chlormequat chloride, and trinexapac-ethyl) in combination with different seeding rates on the malting quality of barley grown in several locations and years in western Canada.

Results: The kernel weight in PGR-treated barley was reduced by 1.7% to 6.5% compared with the nontreated grain. Application of PGRs had no effect on the concentration of proteins and germination energy. Seeding rates significantly affected kernel weight, protein content, and germination index (GI), but no interactions between PGRs and seeding rates were observed. The smaller kernels of ethephon- and trinexapac-treated barley showed good hydration and grain modification during malting, as indicated by high levels of starch-converting enzymes, high Kolbach indices, and low levels of wort β-glucans. Overall, the fine extract of malt from PGR-treated barley was slightly lower than that of the control malt; however, the extract reduction was statistically significant only for chlormequat- and trinexapac-treated barley.

Conclusions: The application of PGRs had significant effects on kernel plumpness and kernel weight, but the effects of PGR application on the malting quality were generally small and insignificant. The decision of PGRs application on malting barley needs to be considered in combination with potential benefits of PGRs in mitigating lodging and their effects on the agronomic performance of barley. © Her Majesty the Queen in Right of Canada 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.10231DOI Listing

Publication Analysis

Top Keywords

application malting
12
malting quality
12
quality barley
12
seeding rates
12
kernel weight
12
barley
9
plant growth
8
pgrs
8
performance barley
8
pgr-treated barley
8

Similar Publications

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.

Plant Physiol Biochem

December 2024

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.

View Article and Find Full Text PDF

High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied.

View Article and Find Full Text PDF

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!