Background: The number and variety of genetically modified organisms (GMOs) used globally for the production of food and feed, and potentially circulating in the European Union (EU), is constantly increasing. This implies an additional effort for the EU enforcement laboratories to optimize available resources, to contain costs and time. A well established approach for streamlining the analytical workflow is the introduction of a screening step, typically based on a smart set of real-time polymerase chain reaction (PCR) screening methods. The multiplexing strategy, allowing the detection of several screening elements simultaneously, is a further optimization of this step.

Results: In this study, we present the validation of a real-time PCR duplex assay for the pat and bar screening elements to be easily incorporated in the GMO diagnostic routine. We also provide a comparison between this method and the related singleplex and pre-spotted assays.

Conclusion: Our results fully respect all the validation parameters suggested by the Minimum Performance Criteria of the European Network of GMO Laboratories. Furthermore, the duplex assay is equivalent in terms of performance compared to the other two methods, but it shows a higher overall flexibility and cost effectiveness. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384061PMC
http://dx.doi.org/10.1002/jsfa.10235DOI Listing

Publication Analysis

Top Keywords

real-time pcr
8
screening elements
8
duplex assay
8
screening
5
development comparative
4
comparative study
4
study pat/bar
4
pat/bar real-time
4
pcr assay
4
assay integrating
4

Similar Publications

TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer.

Comb Chem High Throughput Screen

January 2025

Thoracic and Abdominal Radiotherapy Department I, Meizhou People's Hospital, Meizhou 514031, Guangdong, China.

Background: TSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).

View Article and Find Full Text PDF

Background: The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2 (PLD2) exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.

Aim: To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.

Methods: The study involved 90 patients diagnosed with acute pancreatitis, admitted to our hospital between March 2020 and November 2022.

View Article and Find Full Text PDF

Background: The use of laryngeal masks (LM) has increased widely today, both in anesthesia and in emergency cases. LM are available as reusable and disposable. Although reuse of disposable LM is not recommended, they are reused again after decontamination with different methods in anesthesia units in some countries.

View Article and Find Full Text PDF

Introduction: Micro ribonucleic acids (miRNAs) are small non-coding RNAs that modulate the expression of various genes. They have an important role in cancer pathogenesis. Differential expression of multiple miRNAs have been used as potential diagnostic and prognostic markers.

View Article and Find Full Text PDF

Characteristics and long-term health outcomes of the first domestic COVID-19 outbreak cases in Da Nang, Vietnam: a longitudinal cohort study.

Trop Med Health

January 2025

Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.

Background: Vietnam experienced the first COVID-19 domestic outbreak due to the Wuhan strain (B.1.1) in Da Nang from July 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!