A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hippocampal long-term synaptic depression and memory deficits induced in early amyloidopathy are prevented by enhancing G-protein-gated inwardly rectifying potassium channel activity. | LitMetric

Hippocampal synaptic plasticity disruption by amyloid-β (Aβ) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation. Here, in early in vitro and in vivo amyloidosis mouse models, we study whether GirK channels take part of the hippocampal synaptic plasticity impairments generated by Aβ . In vitro electrophysiological recordings from slices showed that Aβ alters synaptic plasticity by switching high-frequency stimulation (HFS) induced long-term potentiation (LTP) to long-term depression (LTD), which led to in vivo hippocampal-dependent memory deficits. Remarkably, selective pharmacological activation of GirK channels with ML297 rescued both HFS-induced LTP and habituation memory from Aβ action. Moreover, when GirK channels were specifically blocked by Tertiapin-Q, their activation with ML297 failed to rescue LTP from the HFS-dependent LTD induced by Aβ . On the other hand, the molecular analysis of the recorded slices by western blot showed that the expression of GIRK1/2 subunits, which form the prototypical GirK channel in the hippocampus, was not significantly regulated by Aβ . However, immunohistochemical examination of our in vivo amyloidosis model showed Aβ to down-regulate hippocampal GIRK1 subunit expression. Together, our results describe an Aβ-mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models. In this scenario, GirK activation assures memory formation by preventing the transformation of HFS-induced LTP into LTD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217154PMC
http://dx.doi.org/10.1111/jnc.14946DOI Listing

Publication Analysis

Top Keywords

girk channels
16
synaptic plasticity
12
memory deficits
8
g-protein-gated inwardly
8
inwardly rectifying
8
rectifying potassium
8
hippocampal synaptic
8
vivo amyloidosis
8
hfs-induced ltp
8
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!