Water security is key to planetary resilience for human society to flourish in the face of global change. Atmospheric moisture recycling - the process of water evaporating from land, flowing through the atmosphere, and falling out again as precipitation over land - is the invisible mechanism by which water influences resilience, that is the capacity to persist, adapt, and transform. Through land-use change, mainly by agricultural expansion, humans are destabilizing and modifying moisture recycling and precipitation patterns across the world. Here, we provide an overview of how moisture recycling changes may threaten tropical forests, dryland ecosystems, agriculture production, river flows, and water supplies in megacities, and review the budding literature that explores possibilities to more consciously manage and govern moisture recycling. Novel concepts such as the precipitationshed allows for the source region of precipitation to be understood, addressed and incorporated in existing water resources tools and sustainability frameworks. We conclude that achieving water security and resilience requires that we understand the implications of human influence on moisture recycling, and that new research is paving the way for future possibilities to manage and mitigate potentially catastrophic effects of land use and water system change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910651 | PMC |
http://dx.doi.org/10.1016/j.wasec.2019.100046 | DOI Listing |
Sci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, 166 Nowoursynowska Str., 02787 Warsaw, Poland.
This study investigates the potential use of recycled concrete aggregate (RCA), fly ash (FA), and their mixture (RCA+FA) as backfill materials for shallow vertical ground heat exchangers (GHEs). Granulometric, aerometric, and Proctor compaction tests were conducted to determine soil gradation, the void ratio, and the optimal moisture content (OMC) for maximum dry density. RCA demonstrated efficient compaction at lower moisture levels, while FA required higher moisture to reach maximum density.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China.
Hot in-place recycling (HIR) is a sustainable pavement rehabilitation method. However, it is susceptible to aging processes that can compromise its mechanical properties and long-term performance. This study investigates the effects of thermo-oxidative (TO) and ultraviolet (UV) aging on HIR mixtures.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland.
This study investigates the effects of suberic acid residue (SAR) additions on structural single-layer particleboard (like the P5 type, according to EN 312) properties, specifically the water absorption (WA), thickness swelling (TS), modulus of rupture (MOR), modulus of elasticity (MOE), screw withdrawal resistance (SWR), and internal bond (IB) strength. The results indicate that finer SAR fractions (1/0.25 and 2/1) reduce the WA after 2 h of soaking, while larger fractions increase the WA after 24 h, with only the smallest fraction meeting the TS standards.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Industrial and Civil Construction Technology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
This study investigates the modification of bituminous mixtures by varying percentages of PET particles (1%, 3%, 5%, 8%, 10%, and 12% PET). The following methods were employed to analyze the samples: the ring-and-ball softening point determination method (ASTM D36/D36M-14), the Fraass breaking point determination method (EN 12593: 2015), the elongation determination method (EN 13589: 2014), and the needle penetration depth determination method (EN 1426: 2015). Optimal bitumen/PET ratios were identified to obtain modified bituminous mixtures (MBMs) with enhanced operational characteristics (5% and 8% PET).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!