Tissue-resident memory T (Trm) cells are described as having a "sensing and alarming" function, meaning they can rapidly release cytokines in response to local cognate antigen recognition, which in turn, draws circulating immune cells into the tissue. Here, we show noncognate, bystander activation can also trigger the sensing and alarming function of pulmonary CD8 Trm cells. Virus-specific CD8 Trm cells lodged in the lung parenchyma, but not memory CD8 T cells located in the vasculature, rapidly synthesize interferon γ (IFN-γ) following the inhalation of heat-killed bacteria or bacterial products, a process driven by interleukin-12 (IL-12)/IL-18 exposure. We show that a respiratory bacterial infection leads to bystander activation of lung Trm cells that boosts neutrophil recruitment into the airways and attenuates the severity of bacterial pneumonia. These data reveal that lung Trm cells have innate-like properties, enabling amplification of inflammation and participation in noncognate responses to bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.11.103DOI Listing

Publication Analysis

Top Keywords

trm cells
24
bystander activation
12
attenuates severity
8
severity bacterial
8
bacterial pneumonia
8
neutrophil recruitment
8
cd8 trm
8
lung trm
8
cells
7
trm
6

Similar Publications

Tissue-resident memory T (T) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, T cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues.

View Article and Find Full Text PDF

Cell-Cultured Influenza Vaccine Enhances IFN-γ+ T Cell and Memory T Cell Responses Following A/Victoria/2570/2019 IVR-215 (A/H1N1) Infection.

Vaccines (Basel)

December 2024

The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

Background: Influenza remains a significant public health challenge, with vaccination being a substantial way to prevent it. Cell-cultured influenza vaccines have emerged to improve on the drawbacks of egg-based vaccines, but there are few studies focusing on T cell immunity with both types of vaccines. Therefore, we studied the following 2022-2023 seasonal influenza vaccines with a standard dose and high dose: cell-based (C_sd and C_hd) and egg-based (E_sd and E_hd) vaccines.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (T) cells and tissue-resident memory B (B) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses.

View Article and Find Full Text PDF

Transcription repressor BACH2 redirects short-lived terminally differentiated effector into long-lived memory cells. We postulate that BACH2-mediated long-lived memory programs promote HIV-1 persistence in gut CD4+ T cells. We coupled single-cell DOGMA-seq and TREK-seq to capture chromatin accessibility, transcriptome, surface proteins, T cell receptor, HIV-1 DNA and HIV-1 RNA in 100,744 gut T cells from ten aviremic HIV-1+ individuals and five HIV-1- donors.

View Article and Find Full Text PDF

Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!