Polyether-ether-ketone (PEEK) is becoming a popular component of clinical spinal and orthopedic applications, but its practical use suffers from several limitations. In this study, irregular nano-porous monolayer with differently functional groups was formed on the surface of PEEK through sulfonation and nitrification. The surface characteristics were detected by field-emission scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectrometry, water contact angle measurements and Fourier transform infrared spectroscopy. In vitro cellular behaviors were evaluated by cell adhesion, morphological changes, proliferation, alkalinity, phosphatase activity, real-time RT-PCR and western blot analyses. In vivo osseointegration was examined through micro-CT and histological assessments. Our results reveal that the irregular nano-porous of PEEK affect the biological properties. High-temperature hydrothermal NP treatment induced early osteogenic differentiation and early osteogenesis. Modification by sulfonation and nitrification can broaden the use of PEEK in orthopedic and dental applications. This study provides a theoretical basis for the wider clinical application of PEEK. a To obtain a uniform porous structure, PEEK samples were treated by concentrated sulfuric acid and fuming nitric acid (82-80%) with magnetic stirring sequentially. b Effects of nanopores on biological behavior of bMSCS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-019-6349-0 | DOI Listing |
Environ Res
January 2025
Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
Efficient removal of ammonia nitrogen and sulfamethoxazole (SMX) from wastewater has become increasingly critical due to their detrimental effects on aquatic ecosystems and public health. This study aimed to investigate the nitrogen transformation and SMX removal in a membrane aerated biofilm reactor (MABR) under different SMX concentrations (0-200 μg L) with a nitrifying membrane bioreactor (MBR) as a control. Results suggested that SMX removal in MABR was better than that of MBR with SMX addition (50-200 μg L).
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Pyroxasulfone is a relatively new herbicide that is sprayed on soils to control grassy weeds and some broadleaf weeds during the cultivation of agronomic crops. However, information regarding its environmental risks to soil ecosystems is currently limited. Here, the response of soil characteristics and soil bacterial communities to pyroxasulfone exposure were evaluated.
View Article and Find Full Text PDFJ Environ Manage
August 2024
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Aeration System R&D Laboratory of Shandong University-Hengkun Environment, Qingdao, 266237, China. Electronic address:
Antibiotic shock may potentially impact the performance of promising microalgae-nitrifying bacteria consortia (MNBC) processes. This study investigated physiological behaviors of MNBC under sulfamethoxazole (SMX) shock (mg/L level) and verified a light regulating strategy for improving process performance. Results showed that SMX shock did not affect ammonium removal but caused nitrite accumulation, resulting from combined effects of excessive reactive oxidative species (ROS) production, inhibited microalgal photosynthetic activity, upregulated expressions of amoA and hao, and downregulated expression of nxrA.
View Article and Find Full Text PDFEnviron Geochem Health
June 2024
Dyeing, Finishing, Dyestuffs and Advanced Polymers Laboratory, DIDPE, University of West Attica, 250 Thivon St., 122 41, Athens, Greece.
Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.
View Article and Find Full Text PDFSci Total Environ
May 2024
Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!