Wavelength discrimination (WLD) TOF-PET detector with DOI information.

Phys Med Biol

Department of Bio-Convergence, Korea University, Seoul, Republic of Korea. Equal contribution.

Published: February 2020

Depth-of-interaction (DOI) encoding can contribute to improving spatial resolution uniformity and sensitivity in positron-emission-tomography (PET) scanners. In addition, time-of-flight (TOF) PET scanners with DOI encoding have received considerable interest because of their potential for improving the spatial resolution, sensitivity, and image quality of the overall system. In this study, a new DOI detector configuration utilizing scintillators' emission wavelength is proposed, and experimental results on the energy, timing, and DOI performance of the detector are provided. The DOI information from the proposed phoswich-type detector can be acquired at the detector level without complex signal processing by utilizing a single optical filter with customized optical properties. For this, we used either a short pass filter (SPF) or a long pass filter (LPF) that allows light photons of a specific wavelength to pass. The two-layered phoswich detector was configured with two scintillators with different photon-emission spectra. In this study, we used Ce:GAGG (3 mm  ×  3 mm  ×  10 mm) and LYSO:Ce (3 mm  ×  3 mm  ×  10 mm) as the top and bottom layer scintillators, respectively. A digital silicon photomultiplier (dSiPM) was used as the photosensor and for data acquisition. The phoswich detector was placed in the center of two dSiPM pixels, where one of the dSiPM pixels was covered with the optical filter, and the light guide was placed on the other pixel. The detector was tested for energy, timing, and DOI encoding performance. When an SPF was used, the energy resolutions of 16.2% and 11.8% were achieved for the Ce:GAGG (top layer) and LYSO:Ce (bottom layer) respectively without correcting for saturation effect. With a small (3 mm  ×  3 mm  ×  5 mm) LYSO crystal as the reference detector, CRTs (coincidence-resolving times) of 338 ps and 244 ps were recorded for the top and bottom layers respectively. The detector configuration also provides an excellent DOI-separation figure-of-merit (FoM) value of 1.9. In the case of LPF, the energy resolutions of 12.0% and 12.9% were achieved for the Ce:GAGG (top layer) and LYSO:Ce (bottom layer), respectively. CRTs (coincidence resolving times) of 314 ps and 263 ps were recorded for the top and bottom layers, respectively. The DOI-separation FoM value of 1.5 was achieved in this setup. Results show that the proposed method can provide excellent discrete DOI positioning accuracy without compromising the timing performance of the detector.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab6579DOI Listing

Publication Analysis

Top Keywords

doi encoding
12
top bottom
12
bottom layer
12
detector
11
doi
8
improving spatial
8
spatial resolution
8
pet scanners
8
detector configuration
8
energy timing
8

Similar Publications

Purpose: Prelingual deaf children with cochlear implants show lower digit span test scores compared to normal-hearing peers, suggesting a working memory impairment. To pinpoint more precisely the subprocesses responsible for this impairment, we designed a sequence reproduction task with varying length (two to six stimuli), modality (auditory or visual), and compressibility (sequences with more or less regular patterns). Results on 22 school-age children with cochlear implants and 21 normal-hearing children revealed a deficit of children with cochlear implants only in the auditory modality.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

In 2020, I featured two articles in the "mSphere of Influence" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were "Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses" by Tsang et al. (Cell 157:499-513, 2014, https://doi.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!