Cooperative and sequence-dependent model for RNAP dynamics: Application to ribosomal gene transcription.

J Theor Biol

Institute of Biosciences, UNESP - Univ Estadual Paulista, Department of Physics and Biophysics, Botucatu, 18618-689, Brazil. Electronic address:

Published: March 2020

Escherichia coli ribosomal genes are a well-established experimental model used to investigate the transcription process. These genes are essential to cell physiology and are therefore strongly expressed. Multiple transcription units collaborate in rrn expression. Experiments involving electron microscopy have shown the non-uniform density of the RNA polymerases transcribing these ribosomal operons. Here, we investigate RNAP collaborative transcription in E. coli ribosomal genes using a stochastic sequence-dependent model that included interactions among the RNAPs. We achieved results consistent with experimental data using a model with variable parametrization for genic and intergenic regions, compared with previous attempts that used uniform parameters for genic and intergenic regions. Our model also showed that cooperative behaviour reduced the dwell times in pause sites predicted by the single-round approach but induced a new pausing event at an upstream position. This work may stimulate new experimental research and provide other scenarios to test our model predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2019.110134DOI Listing

Publication Analysis

Top Keywords

sequence-dependent model
8
coli ribosomal
8
ribosomal genes
8
genic intergenic
8
intergenic regions
8
model
6
cooperative sequence-dependent
4
model rnap
4
rnap dynamics
4
dynamics application
4

Similar Publications

FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome.

Sci Rep

January 2025

Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.

Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.

View Article and Find Full Text PDF

Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.

Biophys J

January 2025

Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:

In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.

View Article and Find Full Text PDF

Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.

View Article and Find Full Text PDF

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!