Selective toxicity among cancer cells of the same lineage is a hallmark of targeted therapies. As such, identifying compounds that impair proliferation of a subset of non-small-cell lung cancer (NSCLC) cell lines represents one strategy to discover new drugs for lung cancer. Previously, phenotypic screens of 202 103 compounds led to the identification of 208 selective NSCLC toxins ( McMillan , E. A. , , 2018 , 173 , 864 ). The mechanism of action for the majority of these compounds remains unknown. Here, we discovered the target for a series of quinazoline diones (QDC) that demonstrate selective toxicity among 96 NSCLC lines. Using photoreactive probes, we found that the QDC binds to both mitochondrial complex I of the electron transport chain and hydroxyacyl CoA dehydrogenase subunit alpha (HADHA), which catalyzes long-chain fatty acid oxidation. Inhibition of complex I is the on-target activity for QDC, while binding to HADHA is off-target. The sensitivity profile of the QDC across NSCLC lines correlated with the sensitivity profiles of six additional structurally distinct compounds. The antiproliferative activity of these compounds is also the consequence of binding to mitochondrial complex I, reflecting significant structural diversity among complex I inhibitors. Small molecules targeting complex I are currently in clinical development for the treatment of cancer. Our results highlight complex I as a target in NSCLC and report structurally diverse scaffolds that inhibit complex I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038911PMC
http://dx.doi.org/10.1021/acschembio.9b00734DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
mitochondrial complex
12
non-small-cell lung
8
complex
8
selective toxicity
8
nsclc lines
8
cancer
5
compounds
5
nsclc
5
target discovery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!