Specific Recognition of Uranyl Ion Employing a Functionalized Nanochannel Platform for Dealing with Radioactive Contamination.

ACS Appl Mater Interfaces

Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.

Published: January 2020

Radioactive contamination is a highly concerning global environmental issue along with the development of the nuclear industry. On account of sophisticated operations and high cost of instrument detection methods, numerous efforts have been focused on rapid and simple detection of pollution elements and uranium is the most common one. It is an enormous challenge to push the limit of determination as low as possible while carrying out ultrasensitive detection. Here, we report an intelligent platform based on functionalized solid nanochannels to monitor ultratrace uranyl ions. The platform has a detection limit of 1 fM, which is far below the value that traditional instrumental methods can reach. What is more, the system also exhibits uranyl removal property. The mesenchymal stem cells cultivated in media containing uranyl can achieve excellent viability in the presence of the membranes. This work provides a new choice for handling global radioactive contamination of water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b19544DOI Listing

Publication Analysis

Top Keywords

radioactive contamination
12
specific recognition
4
uranyl
4
recognition uranyl
4
uranyl ion
4
ion employing
4
employing functionalized
4
functionalized nanochannel
4
nanochannel platform
4
platform dealing
4

Similar Publications

The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.

View Article and Find Full Text PDF

Although oil and gas (O&G) derived produced waters and drill cuttings are known to contain enhanced levels of naturally occurring radium-228 (Ra) and radium-226 (Ra), most relevant ecological impact assessments have excluded radiological hazards and focus on other important contaminants, such as hydrocarbons and metals. Also, due to restricted access to the delimiting safety zone around operational O&G platforms, the few previous radioecological risk assessment studies have been conducted using seawater samples collected far from the main discharge point and applying default dilution and transfer factors to estimate concentrations of contaminants in biota. In this case study, sediment cores were collected close to a former O&G platform, Northwest Hutton (NWH), that used to be in the UK North Sea (61.

View Article and Find Full Text PDF

In this study, the long-term transfer of Cs from soil to grass on Swedish farms and fields, heavily contaminated after the 1986 radioactive fallout, was investigated. The study spans over 8-14 years, beginning in June 1986, and covers various soil types and agricultural practices. The transfer of Cs from soil to grass was highly variable, with transfer factors ranging from 1.

View Article and Find Full Text PDF

Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!