A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional and structural changes in aorta of mice divergently selected for basal metabolic rate. | LitMetric

Cardiovascular diseases (CVD) are one of the most common causes of mortality likely genetically linked to the variation in basal metabolic rate (BMR). A robust test of the significance of such association may be provided by artificial selection experiments on animals selected for diversification of BMR. Here we asked whether genetically determined differences in BMR correlate with anatomical shift in endothelium structure and if so, the relaxation and contraction responses of the aorta in mice from two lines of Swiss-Webster laboratory mice (Mus musculus) divergently selected for high or low BMR (HBMR and LBMR lines, respectively). Functional and structural study of aorta showed that a selection for divergent BMR resulted in the between-line difference in diastolic aortic capacity. The relaxation was stronger in aorta of the HBMR mice, which may stem from greater flexibility of aorta mediated by higher activity of Ca-activated K channels. Structural examination also indicated that HBMR mice had significantly thicker aorta's middle layer compared to LBMR animals. Such changes may promote arterial stiffness predisposing to cardiovascular diseases. BMR-related differences in the structure and relaxation ability of aortas in studied animals may be reminiscent of potential risk factors in the development of CVD in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-019-01252-6DOI Listing

Publication Analysis

Top Keywords

functional structural
8
aorta mice
8
divergently selected
8
basal metabolic
8
metabolic rate
8
cardiovascular diseases
8
structure relaxation
8
hbmr mice
8
aorta
5
mice
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!