Intrinsic and extrinsic scattering and absorption coefficients of a suspended particle device (SPD) smart window sample at dark and clear appearance states-without and with applied electrical voltage, respectively-were determined by means of the Maheu, Letoulouzan, and Gouesbet four-flux (intrinsic) and Kubelka-Munk two-flux (extrinsic) radiative transfer models, respectively. Extrinsic values were obtained from fitting to the two-flux model taking into account the predominantly forward scattering of the SPD. As an approximation, the Fresnel reflection coefficients were integrated out to the critical angle of total internal reflection in order to compute diffuse interface reflectances. Intrinsic coefficients were retrieved by adding a new proposed approximation for the average crossing parameter based on the collimated and diffuse light intensities at each interface. This approximation, although an improvement of previous approaches, is not entirely consistent with the two-flux model results. However, it paves the way for further development of methods to solve the inverse problem of the four-flux model.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.58.008871DOI Listing

Publication Analysis

Top Keywords

radiative transfer
8
transfer models
8
scattering absorption
8
absorption coefficients
8
coefficients suspended
8
suspended particle
8
particle device
8
two-flux model
8
inversion two-flux
4
two-flux four-flux
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!