The first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth techniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE. The UTC epitaxial structure contains a 300 nm n-InP collection layer and a 300 nm n-InGaAsP waveguide layer. UTC-PDs integrated with Coplanar Waveguides (CPW) exhibit 3 dB bandwidth greater than 65 GHz and output RF power of 1.1 dBm at 100 GHz. We also demonstrate accurate prediction of the absolute level of power radiated by our antenna integrated UTCs, between 200 GHz and 260 GHz, using 3d full-wave modelling and taking the UTC-to-antenna impedance match into account. Further, we present the first optical 3d full-wave modelling of waveguide UTCs, which provides a detailed insight into the coupling between a lensed optical fibre and the UTC chip.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.037065DOI Listing

Publication Analysis

Top Keywords

grown solid
8
solid source
8
source molecular
8
molecular beam
8
beam epitaxy
8
growth techniques
8
full-wave modelling
8
high performance
4
waveguide
4
performance waveguide
4

Similar Publications

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

The physicochemical properties of fruits at different maturity stages using grafting technology are of great importance since grafting can alter the nutritional and functional parameters of the fruit. In this study, grafted yellow pitahaya ( Haw.) fruit, grown on live tutors, was evaluated from stages 0 to 5.

View Article and Find Full Text PDF

Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!