We report optical amplification with an optical-to-optical conversion efficiency of 70 ± 1% from a diode-pumped Cs vapor cell. When pump (852 nm; D-line) and signal (895 nm; D-line) lasers with a narrow spectral width of ∼2 MHz are resonant on the hyperfine states (F = 3 or 4) of the 6S state, we observe that the amplification factors are significantly changed according to the hyperfine-state combination of the pump and signal lasers. We find that the optical frequencies of the pumping and signal lasers need to be controlled near the hyperfine state of 6S (F = 4) to obtain an efficient diode-pumped alkali amplifier (DPAA). To realize highly efficient optical gain conditions, both the spatial modes of the pump and signal lasers are made to overlap in the Cs vapor cell with the use of a single-mode optical fiber. An amplification factor of 430 ± 15 is achieved under the following conditions: cell temperature of 90 °C, signal power of 0.1 mW, and pump power of 200 mW. We believe that our results can aid in the development of highly efficient diode-pumped alkali-vapor lasers and amplifiers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.036231 | DOI Listing |
J Infect Dev Ctries
December 2024
SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.
Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.
Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.
Mater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFMol Divers
January 2025
School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, People's Republic of China.
The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Materials Genome Institute of Shanghai University, Shanghai 200444, China.
The development and generation of affordable and highly efficient energy, particularly hydrogen, are one of the best approaches to address the challenges posed by the depletion of non-renewable energy sources. Hydrogen energy, as a green and ecosystem-friendly source with zero carbon emission, can be generated through various methods, including water splitting (HER/OER) either photo- or electrocatalytic reactions. To implement these reactions effectively in practical applications, it is highly desirable to develop extremely efficient and cost-effective catalytic materials that are comparable to contemporary catalysts.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
Three new manganese compounds on 5-(pyridin-2-yl)-3-phenyl-1,2,4-triazole (L) basis (HL)[MnBr]·HO (1), (HL)[MnCl] (2) and [MnLCl]·HO (3) have been synthesized and characterized in terms of their structure, photoluminescence (PL), and electroluminescence (EL) properties. Compounds 1 and 2 exhibit bright green luminescence ( ≈ 550 nm) with high quantum yields of 75.1 and 71.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!