Single-photon detectors (SPDs) play important roles in highly sensitive detection applications, such as fluorescence spectroscopy, remote sensing and ranging, deep space optical communications, elementary particle detection, and quantum communications. However, the adverse conditions in space, such as the increased radiation flux and thermal vacuum, severely limit their noise performances, reliability, and lifetime. Herein, we present the example of spaceborne, low-noise, high reliability SPDs, based on commercial off-the-shelf (COTS) silicon avalanche photodiodes (APD). Based on the high noise-radiation sensitivity of silicon APD, we have developed special shielding structures, multistage cooling technologies, and configurable driver electronics that significantly improved the COTS APD reliability and mitigated the SPD noise-radiation sensitivity. This led to a reduction of the expected in-orbit radiation-induced dark count rate (DCR) increment rate from ∼219 counts per second (cps) per day to ∼0.76 cps/day. During a continuous period of continuous operations in orbit which spanned of 1029 days, the SPD DCR was maintained below 1000 cps, i.e., the actual in-orbit radiation-induced DCR increment rate was ∼0.54 cps/day, i.e., two orders of magnitude lower than those evoked by previous technologies, while its photon detection efficiency was > 45%. Our spaceborne, low-noise SPDs established a feasible satellite-based up-link quantum communication that was validated on the quantum experiment science satellite platform. Moreover, our SPDs open new windows of opportunities for space research and applications in deep-space optical communications, single-photon laser ranging, as well as for testing the fundamental principles of physics in space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.036114 | DOI Listing |
Phase noise performance of photonic microwave systems, such as optical frequency division (OFD), can surpass state-of-the-art electronic oscillators by several orders of magnitude. However, high-finesse cavities and active stabilization requirements in OFD systems make them complicated and potentially unfit for field deployment. Ultra-low noise mode-locked monolithic lasers offer a viable alternative for a compact and simple photonic microwave system.
View Article and Find Full Text PDFThe Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Earth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb).
View Article and Find Full Text PDFSingle-photon detectors (SPDs) play important roles in highly sensitive detection applications, such as fluorescence spectroscopy, remote sensing and ranging, deep space optical communications, elementary particle detection, and quantum communications. However, the adverse conditions in space, such as the increased radiation flux and thermal vacuum, severely limit their noise performances, reliability, and lifetime. Herein, we present the example of spaceborne, low-noise, high reliability SPDs, based on commercial off-the-shelf (COTS) silicon avalanche photodiodes (APD).
View Article and Find Full Text PDFMicromachines (Basel)
May 2019
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Capacitive sensing is a key technique to measure the test mass movement with a high resolution for space-borne gravitational wave detectors, such as Laser Interferometer Space Antenna (LISA) and TianQin. The capacitance resolution requirement of TianQin is higher than that of LISA, as the arm length of TianQin is about 15 times shorter. In this paper, the transfer function and capacitance measurement noise of the circuit are modeled and analyzed.
View Article and Find Full Text PDFSensors (Basel)
August 2017
Research and Development Department, TOTAL, avenue Larribau, 64000 Pau, France.
Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!