Flavin-containing monooxygenases (FMOs) are ubiquitous in all domains of life and metabolize a myriad of xenobiotics, including toxins, pesticides and drugs. However, despite their pharmacological importance, structural information remains bereft. To further our understanding behind their biochemistry and diversity, we used ancestral-sequence reconstruction, kinetic and crystallographic techniques to scrutinize three ancient mammalian FMOs: AncFMO2, AncFMO3-6 and AncFMO5. Remarkably, all AncFMOs could be crystallized and were structurally resolved between 2.7- and 3.2-Å resolution. These crystal structures depict the unprecedented topology of mammalian FMOs. Each employs extensive membrane-binding features and intricate substrate-profiling tunnel networks through a conspicuous membrane-adhering insertion. Furthermore, a glutamate-histidine switch is speculated to induce the distinctive Baeyer-Villiger oxidation activity of FMO5. The AncFMOs exhibited catalysis akin to human FMOs and, with sequence identities between 82% and 92%, represent excellent models. Our study demonstrates the power of ancestral-sequence reconstruction as a strategy for the crystallization of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-019-0347-2 | DOI Listing |
Mol Biol Evol
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA.
Type II CRISPR endonucleases are widely used programmable genome editing tools. Recently, CRISPR-Cas systems with highly compact nucleases have been discovered, including Cas9d (a type II-D nuclease). Here, we report the cryo-EM structures of a Cas9d nuclease (747 amino acids in length) in multiple functional states, revealing a stepwise process of DNA targeting involving a conformational switch in a REC2 domain insertion.
View Article and Find Full Text PDFAncestral sequence reconstruction (ASR) is typically performed using homogeneous evolutionary models, which assume that the same substitution propensities affect all sites and lineages. These assumptions are routinely violated: heterogeneous structural and functional constraints favor different amino acid states at different sites, and these constraints often change among lineages as epistatic substitutions accrue at other sites. To evaluate how realistic violations of the homogeneity assumption affect ASR, we developed site-specific substitution models and parameterized them using data from deep mutational scanning experiments on three protein families; we then used these models to perform ASR on the empirical alignments and on alignments simulated under heterogeneous conditions derived from the experiments.
View Article and Find Full Text PDFJACS Au
December 2024
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.
Biocatalysis has emerged as a green approach for efficient and sustainable production in various industries. In recent decades, numerous advancements in computational and predictive approaches, including ancestral sequence reconstruction (ASR) have sparked a new wave for protein engineers to improve and expand biocatalyst capabilities. ASR is an evolution-based strategy that uses phylogenetic relationships among homologous extant sequences to probabilistically infer the most likely ancestral sequences.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia.
Plant cation-chloride cotransporters (CCCs) are proposed to be Na-K-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K-Cl cotransporters (KCCs). Here, we investigated grapevine ( L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!